Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamiFISH

Abstract

Structural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts. Here we present origamiFISH, a label-free and universal method for the single-molecule fluorescence detection of DNA origami nanostructures in cells and tissues. origamiFISH targets pan-DN scaffold sequences with hybridization chain reaction probes to achieve 1,000-fold signal amplification. We identify cell-type- and DN shape-specific spatiotemporal distribution patterns within a minute of uptake and at picomolar DN concentrations, 10,000× lower than field standards. We additionally optimize compatibility with immunofluorescence and tissue clearing to visualize DN distribution within tissue cryo-/vibratome sections, slice cultures and whole-mount organoids. Together, origamiFISH enables the accurate mapping of DN distribution across subcellular and tissue barriers for guiding the development of DN-based therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of origamiFISH protocol and analyses.
Fig. 2: origamiFISH enables highly sensitive imaging of DNs in situ.
Fig. 3: origamiFISH detects loss of DN stability in situ.
Fig. 4: origamiFISH reveals cell-type-specific, DN shape-specific and time-dependent uptake patterns of DNs.
Fig. 5: origamiFISH is compatible with immunohistochemistry.
Fig. 6: origamiFISH is robust across tissue models.

Similar content being viewed by others

Data availability

The data that support the methods and findings of this study are available within the article and its Supplementary Information. The raw imaging data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Dey, S. et al. DNA origami. Nat. Rev. Methods Primers 1, 13 (2021).

    Article  Google Scholar 

  2. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  Google Scholar 

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Tseng, C. Y., Wang, W. X., Douglas, T. R. & Chou, L. Y. T. Engineering DNA nanostructures to manipulate immune receptor signaling and immune cell fates. Adv. Healthc. Mater. 11, e2101844 (2022).

    Article  Google Scholar 

  5. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  6. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  Google Scholar 

  7. Zhang, Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).

    Article  CAS  Google Scholar 

  8. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article  CAS  Google Scholar 

  9. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article  CAS  Google Scholar 

  10. Han, S., Liu, W., Yang, S. & Wang, R. Facile and label-free electrochemical biosensors for microRNA detection based on DNA origami nanostructures. ACS Omega 4, 11025–11031 (2019).

    Article  CAS  Google Scholar 

  11. Huang, Y., Nguyen, M.-K., Natarajan, A. K., Nguyen, V. H. & Kuzyk, A. A DNA origami-based chiral plasmonic sensing device. ACS Appl. Mater. Interfaces 10, 44221–44225 (2018).

    Article  CAS  Google Scholar 

  12. Kosuri, P., Altheimer, B. D., Dai, M., Yin, P. & Zhuang, X. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 572, 136–140 (2019).

    Article  CAS  Google Scholar 

  13. Kuzuya, A. et al. Nanomechanical DNA origami pH sensors. Sensors 14, 19329–19335 (2014).

    Article  Google Scholar 

  14. Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y. & Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun. 2, 449 (2011).

    Article  Google Scholar 

  15. Berger, R. M. L. et al. Nanoscale FasL organization on DNA origami to decipher apoptosis signal activation in cells. Small 17, e2101678 (2021).

    Article  Google Scholar 

  16. Dong, R. et al. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl Acad. Sci. USA 118, e2109057118 (2021).

    Article  Google Scholar 

  17. Hawkes, W. et al. Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control. Faraday Discuss. 219, 203–219 (2019).

    Article  CAS  Google Scholar 

  18. Hellmeier, J. et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc. Natl Acad. Sci. USA 118, e2016857118 (2021).

    Article  CAS  Google Scholar 

  19. Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors using DNA origami promotes phagocytosis. eLife 10, e68311 (2021).

    Article  CAS  Google Scholar 

  20. Bertosin, E. et al. Cryo-electron microscopy and mass analysis of oligolysine-coated DNA nanostructures. ACS Nano 15, 9391–9403 (2021).

    Article  CAS  Google Scholar 

  21. Endo, M. & Sugiyama, H. Direct observation of dynamic movement of DNA molecules in DNA origami imaged using high-speed AFM. Methods Mol. Biol. 1814, 213–224 (2018).

    Article  CAS  Google Scholar 

  22. Helmig, S. et al. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. ACS Nano 4, 7475–7480 (2010).

    Article  CAS  Google Scholar 

  23. Kabiri, Y. et al. Visualization of unstained DNA nanostructures with advanced in-focus phase contrast TEM techniques. Sci. Rep. 9, 7218 (2019).

    Article  Google Scholar 

  24. Silvester, E. et al. DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell 184, 1110–1121.e16 (2021).

    Article  CAS  Google Scholar 

  25. Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article  CAS  Google Scholar 

  26. Bastings, M. M. C. et al. Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 18, 3557–3564 (2018).

    Article  CAS  Google Scholar 

  27. Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. 53, 7745–7750 (2014).

    Article  CAS  Google Scholar 

  28. Wang, P. et al. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140, 2478–2484 (2018).

    Article  CAS  Google Scholar 

  29. Green, C. M., Mathur, D. & Medintz, I. L. Understanding the fate of DNA nanostructures inside the cell. J. Mater. Chem. B 8, 6170–6178 (2020).

    Article  CAS  Google Scholar 

  30. Koga, M. M., Comberlato, A., Rodríguez-Franco, H. J. & Bastings, M. M. C. Strategic insights into engineering parameters affecting cell type-specific uptake of DNA-based nanomaterials. Biomacromolecules 23, 2586–2594 (2022).

    Article  CAS  Google Scholar 

  31. Lacroix, A., Vengut-Climent, E., de Rochambeau, D. & Sleiman, H. F. Uptake and fate of fluorescently labeled DNA nanostructures in cellular environments: a cautionary tale. ACS Cent. Sci. 5, 882–891 (2019).

    Article  CAS  Google Scholar 

  32. Hedegaard, S. F. et al. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci. Rep. 8, 6327 (2018).

    Article  Google Scholar 

  33. Hughes, L. D., Rawle, R. J. & Boxer, S. G. Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS ONE 9, e87649 (2014).

    Article  Google Scholar 

  34. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  35. Chen, A. K., Cheng, Z., Behlke, M. A. & Tsourkas, A. Assessing the sensitivity of commercially available fluorophores to the intracellular environment. Anal. Chem. 80, 7437–7444 (2008).

    Article  CAS  Google Scholar 

  36. Kretschy, N., Sack, M. & Somoza, M. M. Sequence-dependent fluorescence of Cy3- and Cy5-labeled double-stranded DNA. Bioconjugate Chem. 27, 840–848 (2016).

    Article  CAS  Google Scholar 

  37. Srisantitham, S., Sukwattanasinitt, M. & Unarunotai, S. Effect of pH on fluorescence quenching of organic dyes by graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 550, 123–131 (2018).

    Article  CAS  Google Scholar 

  38. Zheng, Q., Jockusch, S., Zhou, Z. & Blanchard, S. C. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol. 90, 448–454 (2014).

    Article  CAS  Google Scholar 

  39. Choi, H. M. T., Beck, V. A. & Pierce, N. A. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284–4294 (2014).

    Article  CAS  Google Scholar 

  40. Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).

    Article  Google Scholar 

  41. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  42. Tsuneoka, Y. & Funato, H. Modified in situ hybridization chain reaction using short hairpin DNAs. Front. Mol. Neurosci. 13, 75 (2020).

    Article  CAS  Google Scholar 

  43. Liu, X. et al. DNA framework-encoded mineralization of calcium phosphate. Chem 6, 472–485 (2020).

    Article  CAS  Google Scholar 

  44. Maezawa, T. et al. DNA density-dependent uptake of DNA origami-based two-or three-dimensional nanostructures by immune cells. Nanoscale 12, 14818–14824 (2020).

    Article  CAS  Google Scholar 

  45. Zeng, Y. C. et al. Optimizing CpG spatial distribution with DNA origami for Th1-polarized therapeutic vaccination. Preprint at bioRxiv https://doi.org/10.1101/2022.06.08.495340 (2022).

  46. Shaffer, S. M., Wu, M.-T., Levesque, M. J. & Raj, A. Turbo FISH: a method for rapid single molecule RNA FISH. PLoS ONE 8, e75120 (2013).

    Article  CAS  Google Scholar 

  47. Shapero, K. et al. Time and space resolved uptake study of silica nanoparticles by human cells. Mol. Biosyst. 7, 371–378 (2011).

    Article  CAS  Google Scholar 

  48. Bratu, D. P., Cha, B.-J., Mhlanga, M. M., Kramer, F. R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl Acad. Sci. USA 100, 13308–13313 (2003).

    Article  CAS  Google Scholar 

  49. Tübing, F. et al. Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J. Neurosci. 30, 4160–4170 (2010).

    Article  Google Scholar 

  50. Batish, M., van den Bogaard, P., Kramer, F. R. & Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl Acad. Sci. USA 109, 4645–4650 (2012).

    Article  CAS  Google Scholar 

  51. Mäger, I., Langel, K., Lehto, T., Eiríksdóttir, E. & Langel, U. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim. Biophys. Acta 1818, 502–511 (2012).

    Article  Google Scholar 

  52. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  53. Zhang, Y.-N., Poon, W., Sefton, E. & Chan, W. C. W. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for robust humoral immunity. ACS Nano 14, 9478–9490 (2020).

    Article  CAS  Google Scholar 

  54. Schnell, S. A., Staines, W. A. & Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 47, 719–730 (1999).

    Article  CAS  Google Scholar 

  55. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  Google Scholar 

  56. Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article  Google Scholar 

  57. Wang, Y. et al. DNA origami penetration in cell spheroid tissue models is enhanced by wireframe design. Adv. Mater. 33, e2008457 (2021).

    Article  Google Scholar 

  58. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  Google Scholar 

  59. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  Google Scholar 

  60. Sasaki, H. M., Kishi, J. Y., Wu, C.-T., Beliveau, B. J. & Yin, P. Quantitative multiplexed imaging of chromatin ultrastructure with Decode-PAINT. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502089 (2022).

  61. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377.e24 (2021).

    Article  CAS  Google Scholar 

  62. Shah, S. et al. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143, 2862–2867 (2016).

    CAS  Google Scholar 

  63. Wang, W. X. & Lefebvre, J. L. Morphological pseudotime ordering and fate mapping reveal diversification of cerebellar inhibitory interneurons. Nat. Commun. 13, 3433 (2022).

    Article  CAS  Google Scholar 

  64. Eklund, A. S., Comberlato, A., Parish, I. A., Jungmann, R. & Bastings, M. M. C. Quantification of strand accessibility in biostable DNA origami with single-staple resolution. ACS Nano 15, 17668–17677 (2021).

    Article  CAS  Google Scholar 

  65. Li, Y. et al. Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Proc. Natl Acad. Sci. USA 116, 9527–9532 (2019).

    Article  CAS  Google Scholar 

  66. Rezende, R. M., Lopes, M. E., Menezes, G. B. & Weiner, H. L. Visualizing lymph node structure and cellular localization using ex-vivo confocal microscopy. J. Vis. Exp. e59335 (2019).

Download references

Acknowledgements

W.X.W. acknowledges the PRiME initiative for fellowship support. T.R.D. acknowledges the Barbara and Frank Milligan Graduate fellowship. Y.L. acknowledges NSERC Discovery Grant (RGPIN-2020-06345); Medicine by Design, Simons Foundation (479754); Brain Canada, Stem Cell Network (ECI-14); Can-GARD; and Brain & Behavior Research Foundation (29772). J.M. acknowledges Brain Canada (FL2021-BCF-Sickkids), Stem Cell Network (ECR-C4R1-4), NSERC Discovery Grant (RGPIN-2019-06938) and The Hospital for Sick Children. L.Y.T.C. acknowledges NSERC Discovery Grant (RGPIN-2020-05966), Medicine by Design (MbDNI-2019-01, MbDNI-2020-01) and the Canadian Foundation for Innovation (39262) for funding. We thank W. Shih for sharing the DN barrel design sequences. We thank members of the Chou lab for helpful comments on this paper. We thank P. Paroutis and the Hospital for Sick Children imaging facility for instrument support and guidance on light-sheet microscopy. We thank J. Lefebvre for the generous gift of antibodies, reagents and use of equipment.

Author information

Authors and Affiliations

Authors

Contributions

W.X.W. and L.Y.T.C. conceptualized the project and designed the experiments. W.X.W. performed the experiments with assistance from T.R.D., H.Z., A.B., M.R. and W.T. W.X.W. performed the analyses. Z.J., J.M., Y.L., Y.S. and L.Y.T.C. participated in the data interpretation and provided supervision. W.X.W. and L.Y.T.C. wrote the paper with input from all authors.

Corresponding author

Correspondence to Leo Y. T. Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Amelie Heuer-Jungemann, Tania Patiño and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Notes 1–4 and Methods.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1 and 2.

Supplementary Data 2

Raw data for Supplementary Figs. 4 and 8–10.

Supplementary Video 1

DN microinjection video.

Source data

Source Data Fig. 2

Raw data for the graphs in Fig. 2.

Source Data Fig. 3

Raw data for the graphs in Fig. 3.

Source Data Fig. 4

Raw data for the graphs in Fig. 4.

Source Data Fig. 5

Raw data for the graphs in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.X., Douglas, T.R., Zhang, H. et al. Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamiFISH. Nat. Nanotechnol. 19, 58–69 (2024). https://doi.org/10.1038/s41565-023-01449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01449-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research