Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers

Abstract

Acidic oxygen evolution reaction is crucial for practical proton exchange membrane water splitting electrolysers, which have been hindered by the high catalytic overpotential and high loading of noble metal catalysts. Here we present a torsion-strained Ta0.1Tm0.1Ir0.8O2-δ nanocatalyst with numerous grain boundaries that exhibit a low overpotential of 198 mV at 10 mA cm−2 towards oxygen evolution reaction in 0.5 M H2SO4. Microstructural analyses, X-ray absorption spectroscopy and theoretical calculations reveal that the synergistic effects between grain boundaries that result in torsion-strained Ir–O bonds and the doping induced ligand effect collectively tune the adsorption energy of oxygen intermediates, thus enhancing the catalytic activity. A proton exchange membrane electrolyser using a Ta0.1Tm0.1Ir0.8O2-δ nanocatalyst with a low mass loading of 0.2 mg cm−2 can operate stably at 1.5 A cm2 for 500 hours with an estimated cost of US$1 per kilogram of H2, which is much lower than the target (US$2 per kg of H2) set by the US Department of Energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of torsion-strained TaxTmyIr1−xyO2−δ nanocatalysts.
Fig. 2: Surface XPS and bulk XANES, EXAFS analyses of various GB-TaxTmyIr1−xyO2−δ catalysts.
Fig. 3: Electrocatalytic properties of various TaxTmyIr1−xyO2−δ nanocatalysts towards OER in 0.5 M H2SO4 electrolyte.
Fig. 4: Tuning the electronic structures of IrO2−δ by strain and doping to enhance OER activity.
Fig. 5: Water splitting PEM electrolyser using GB-TaxTmyIr1−xyO2−δ nanocatalysts as the anode catalysts in 0.5 M H2SO4 electrolyte at 50 °C.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are presented in the paper or the Supplementary Information.  Source data are provided with this paper. Extra data are available from the corresponding author upon reasonable request.

References

  1. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  2. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  Google Scholar 

  3. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  4. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  5. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  CAS  Google Scholar 

  6. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  Google Scholar 

  7. Chatti, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019).

    Article  CAS  Google Scholar 

  8. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011 (2016).

    Article  CAS  Google Scholar 

  9. Blasco-Ahicart, M., Soriano-López, J., Carbó, J. J., Poblet, J. M. & Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 10, 24–30 (2018).

    Article  CAS  Google Scholar 

  10. Yang, L. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018).

    Article  CAS  Google Scholar 

  11. Ping, Y., Nielsen, R. J. & Goddard, W. A. III The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J. Am. Chem. Soc. 139, 149–155 (2017).

    Article  CAS  Google Scholar 

  12. Bessarabov, D. et al. Gas crossover mitigation in PEM water electrolysis: hydrogen cross-over benchmark study of 3M’s Ir-NSTF based electrolysis catalyst-coated membranes. ECS Trans. 75, 1165–1173 (2016).

    Article  CAS  Google Scholar 

  13. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  CAS  Google Scholar 

  14. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Cat. Chem. 3, 1159–1165 (2011).

    CAS  Google Scholar 

  15. Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  CAS  Google Scholar 

  16. Suen, N. T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    Article  CAS  Google Scholar 

  17. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).

    Article  Google Scholar 

  18. Gao, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 141, 3014–3023 (2019).

    Article  CAS  Google Scholar 

  19. Diaz-Morales, O. et al. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016).

    Article  CAS  Google Scholar 

  20. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  Google Scholar 

  21. You, B. et al. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019).

    Article  Google Scholar 

  22. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414 (2016).

    Article  CAS  Google Scholar 

  23. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  Google Scholar 

  24. Shan, J. et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem. 5, 445–459 (2019).

    Article  CAS  Google Scholar 

  25. Petrie, J. R., Jeen, H., Barron, S. C., Meyer, T. L. & Lee, H. N. Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 138, 7252–7255 (2016).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031 (2016).

    Article  CAS  Google Scholar 

  27. Tobias, R., Hong Nhan, N., Detre, T., Robert, S. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Article  Google Scholar 

  28. Zhu, Y. T., Liao, X. Z. & Wu, X. L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1–62 (2012).

    Article  CAS  Google Scholar 

  29. Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969 (1998).

    Article  CAS  Google Scholar 

  30. Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187 (2017).

    Article  CAS  Google Scholar 

  31. Chhetri, M. et al. Mechanochemical synthesis of free-standing platinum nanosheets and their electrocatalytic properties. Adv. Mater. 27, 4430–4437 (2015).

    Article  CAS  Google Scholar 

  32. Bøjesen, E. D. & Iversen, B. B. The chemistry of nucleation. Cryst. Eng. Comm. 18, 8332–8353 (2016).

    Article  Google Scholar 

  33. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  Google Scholar 

  34. Morin, S. A., Bierman, M. J., Tong, J. & Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476 (2010).

    Article  CAS  Google Scholar 

  35. Palumbo, G., Thorpe, S. & Aust, K. On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scr. Metall. Mater. 24, 1347–1350 (1990).

    Article  CAS  Google Scholar 

  36. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  37. Freakley, S. J., Ruiz-Esquius, J. & Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interf. Anal. 49, 794–799 (2017).

    Article  CAS  Google Scholar 

  38. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  CAS  Google Scholar 

  39. Pham, H. H., Cheng, M. J., Frei, H. & Wang, L. W. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) Surface. ACS Catal. 6, 5610–5617 (2016).

    Article  CAS  Google Scholar 

  40. Anantharaj, S., Noda, S., Driess, M. & Menezes, P. W. The pitfalls of using potentiodynamic polarization curves for tafel analysis in electrocatalytic water splitting. ACS Energy Lett. 6, 1607–1611 (2021).

    Article  CAS  Google Scholar 

  41. Cherevko, S., Geiger, S., Kasian, O., Mingers, A. & Mayrhofer, K. J. J. Oxygen evolution activity and stability of iridium in acidic media. Part 2—electrochemically grown hydrous iridium oxide. J. Electroanal. Chem. 774, 102–110 (2016).

    Article  CAS  Google Scholar 

  42. Meng, G. et al. Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx. Adv. Mater. 31, e1903616 (2019).

    Article  Google Scholar 

  43. Exner, K. S. Design criteria for oxygen evolution electrocatalysts from first principles: introduction of a unifying material-screening approach. ACS Appl. Energy Mater. 2, 7991–8001 (2019).

    Article  CAS  Google Scholar 

  44. Wang, M., Wang, Z., Gong, X. & Guo, Z. The intensification technologies to water electrolysis for hydrogen production—a review. Renew. Sustain. Energy Rev. 29, 573–588 (2014).

    Article  CAS  Google Scholar 

  45. Bender, G. & Dinh, H. HydroGEN: Low-Temperature Electrolysis (LTE) and LTE/Hybrid Supernode (No. NREL/PR-5900-76549). National Renewable Energy Lab.(NREL), Golden, CO (United States, 2020).

  46. Ravel, B. N. M. & Newville, M. Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (2020XZZX002-07), Natural Science Foundation of China (project nos. U1932148, 21872174, 51672057, 21676246 and 21776248) and International Science and Technology Cooperation Program (grant nos. 2018YFE0203400 and 2017YFE0127800). H.S. and S.J. thank the US NSF (grant no. CHE-1955074) for support.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and S.J. conceived the idea. X.Z. designed experiments. S.H. prepared the samples, characterized them and analysed the data. H.S. and J.H. helped to analyse the XPS and electrochemical data. M.L. helped to analyse EXAFS data. G.Z. and Y.H. performed the DFT calculations. F.Z., X.L., Z.S., J.H., Y.Q. and L.Z. assisted in the fabrication of PEM electrolysers and analysed the device efficiency. S.H., H.S., J.H., B.S., L.L., X.Z. and S.J. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Xingwang Zhang or Song Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41, Tables 1–17 and References.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, S., Sheng, H., Liu, M. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00986-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing