Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets

Abstract

Bulk and two-dimensional black phosphorus are considered to be promising battery materials due to their high theoretical capacities of 2,600 mAh g−1. However, their rate and cycling capabilities are limited by the intrinsic (de-)alloying mechanism. Here, we demonstrate a unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding. These redox-active sites of the oxidized black phosphorus are confined at the amorphorized heterointerface, revealing truly reversible pseudocapacitance (99% of total stored charge at 2,000 mV s−1). Moreover, oxidized black-phosphorus-based electrodes exhibit a capacitance of 478 F g–1 (four times greater than black phosphorus) with a rate capability of ~72% (compared to 21.2% for black phosphorus) and retention of ~91% over 50,000 cycles. In situ spectroelectrochemical and theoretical analyses reveal a reversible change in the surface electronic structure and chemical environment of the surface-exposed P redox sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure and interaction of the foBG hybrid.
Fig. 2: Morphology and microstructure of the foBG hybrid.
Fig. 3: Electrochemical characterizations of the foBG hybrid.
Fig. 4: Pseudocapacitive features of the foBG hybrid.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to restrictions (for example, information that could compromise the privacy of research participants).

References

  1. Jiang, J.-W. & Park, H. S. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014).

    Article  CAS  Google Scholar 

  2. Cai, Y., Zhang, G. & Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014).

    Article  CAS  Google Scholar 

  3. Ling, X. et al. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 15, 4080–4088 (2015).

    Article  CAS  Google Scholar 

  4. Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014).

    Article  Google Scholar 

  5. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  6. Petoukhoff, C. E. et al. Ultrafast charge transfer and enhanced absorption in MoS2–organic van der Waals heterojunctions using plasmonic metasurfaces. ACS Nano 10, 9899–9908 (2016).

    Article  CAS  Google Scholar 

  7. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article  CAS  Google Scholar 

  8. Sun, J. et al. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014).

    Article  CAS  Google Scholar 

  9. Sun, J. et al. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotech. 10, 980–985 (2015).

    Article  CAS  Google Scholar 

  10. Xu, G.-L. et al. Nanostructured black phosphorus/Ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 16, 3955–3965 (2016).

    Article  CAS  Google Scholar 

  11. Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Article  Google Scholar 

  12. Peng, L., Zhu, Y., Chen, D., Ruoff, R. S. & Yu, G. Two-dimensional materials for beyond lithium ion batteries. Adv. Energy Mater. 6, 1600025 (2016).

    Article  Google Scholar 

  13. Wang, X., Weng, Q., Yang, Y., Bando, Y. & Golberg, D. Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 45, 4042–4073 (2016).

    Article  CAS  Google Scholar 

  14. Kwon, H. et al. Ultrathin and flat layer black phosphorus fabricated by reactive oxygen and water rinse. ACS Nano 10, 8723–8731 (2016).

    Article  CAS  Google Scholar 

  15. Verkade, J. G. & Quin, L. D. Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis (Wiley-VCH, Weinheim, 1987).

    Google Scholar 

  16. Smith, J. G. Organic Chemistry (McGraw-Hill, New York, 2013).

    Google Scholar 

  17. Liu, S. et al. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974–10980 (2015).

    Article  CAS  Google Scholar 

  18. Yu, X. et al. Elucidating surface redox charge storage of phosphorus-incorporated graphenes with hierarchical architectures. Nano Energy 15, 576–586 (2015).

    Article  CAS  Google Scholar 

  19. Ma, G. et al. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5, 7854–7861 (2017).

    Article  CAS  Google Scholar 

  20. Silberberg, M. S., Duran, R., Haas, C. G. & Norman, A. D. Chemistry: The Molecular Nature of Matter and Change (McGraw-Hill, New York, 2006)..

  21. Kang, J. et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).

    Article  CAS  Google Scholar 

  22. Edmonds, M. et al. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557–14562 (2015).

    Article  CAS  Google Scholar 

  23. Asensio, M. C. et al. Interfaces and heterostructures of van der Waals materials. J. Phys. Condens. Matter 28, 490301 (2016).

    Article  Google Scholar 

  24. Novoselov, K., Mishchenko, A., Carvalho, A. & Neto, A. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  25. Gao, Y., Liu, Q. & Xu, B. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures. ACS Nano 10, 5431–5439 (2016).

    Article  CAS  Google Scholar 

  26. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  27. Gao, Q., Demarconnay, L., Raymundo-Piñero, E. & Béguin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012).

    Article  CAS  Google Scholar 

  28. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  CAS  Google Scholar 

  29. Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014).

    Article  CAS  Google Scholar 

  30. Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    Article  CAS  Google Scholar 

  31. Frank, O., Dresselhaus, M. S. & Kalbac, M. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems. Acc. Chem. Res. 48, 111–118 (2015).

    Article  CAS  Google Scholar 

  32. van den Beld, W. T. et al. In-situ Raman spectroscopy to elucidate the influence of adsorption in graphene electrochemistry. Sci. Rep. 7, 45080 (2017).

    Article  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  Google Scholar 

  38. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  39. Aykol, M., Kim, S. & Wolverton, C. Van der Waals interactions in layered lithium cobalt oxides. J. Phys. Chem. C 119, 19053–19058 (2015).

    Article  CAS  Google Scholar 

  40. Kim, S. et al. Layered-layered-spinel cathode materials prepared by a high-energy ball-milling process for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 363–370 (2015).

    Article  Google Scholar 

  41. Chen, K.-S. et al. Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett. 17, 2539–2546 (2017).

    Article  CAS  Google Scholar 

  42. Zhi, M., Xiang, C., Li, J., Li, M. & Wu, N. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013).

    Article  CAS  Google Scholar 

  43. Du, H., Lin, X., Xu, Z. & Chu, D. Recent developments in black phosphorus transistors. J. Mater. Chem. C 3, 8760–8775 (2015).

    Article  CAS  Google Scholar 

  44. Cao, J. et al. Supercapacitor electrodes from the in situ reaction between two-dimensional sheets of black phosphorus and graphene oxide. ACS Appl. Mater. Interfaces 10, 10330–10338 (2018).

    Article  CAS  Google Scholar 

  45. Yu, X. et al. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8, 1702930 (2018).

    Article  Google Scholar 

  46. Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  CAS  Google Scholar 

  47. Choi, B. G. et al. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4, 2910–2918 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Convergence Program (CAP-15-02-KBSI) of the National Research Council of Science & Technology, the National Research Foundation funded by the Ministry of Science, ICT, and Future Planning (no. 2017M2A2A6A01021187) and the Energy Technology Development Project (ETDP) funded by the Ministry of Trade, Industry, and Energy (20172410100150), Republic of Korea. The authors thank the Korea Basic Science Institute for technical support and Y. Gogotsi for valuable discussions. S.K. and C.W. (DFT calculations) were supported by financial assistance award no. 70NANB14H012 from the US Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). This research was supported in part through the computational resources and staff contributions of the Quest High Performance Computing Facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. S.K. is grateful for discussions with V. I. Hegde, M. Liu and S. Hao at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

H.S.P., P.N. and X.Y. conceived and designed the experiments. P.N. and X.Y. performed sample fabrication, characterization and electrochemical measurements. P.N. and X.Y. conducted in situ Raman spectroscopy and analysed in situ Raman and in situ NMR data. S.K.P. and H.J.K. carried out in situ NMR spectroscopy. J.-Y.H., J.E.Y., J.K. and M.C. characterized bulk and 2D BP and interpreted data. W.L. and J.Y.H. carried out HAADF-STEM and EDS measurements. S.K. and C.W. performed DFT calculations and data analysis. P.N., X.Y., S.K., M.C. and H.S.P. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ho Seok Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhanivej, P., Yu, X., Park, S.K. et al. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nature Mater 18, 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0230-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing