Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental selection and epistasis in an empirical phenotype–environment–fitness landscape

Abstract

Fitness landscapes, mappings of genotype/phenotype to their effects on fitness, are invaluable concepts in evolutionary biochemistry. Although widely discussed, measurements of phenotype–fitness landscapes in proteins remain scarce. Here, we quantify all single mutational effects on fitness and phenotype (EC50) of VIM-2 β-lactamase across a 64-fold range of ampicillin concentrations. We then construct a phenotype–fitness landscape that takes variations in environmental selection pressure into account. We found that a simple, empirical landscape accurately models the ~39,000 mutational data points, suggesting that the evolution of VIM-2 can be predicted on the basis of the selection environment. Our landscape provides new quantitative knowledge on the evolution of the β-lactamases and proteins in general, particularly their evolutionary dynamics under subinhibitory antibiotic concentrations, as well as the mechanisms and environmental dependence of non-specific epistasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for generating fitness scores and EC50 values using DMS.
Fig. 2: Distributions of fitness and EC50 effects.
Fig. 3: Phenotype–fitness landscapes across different AMP concentrations.
Fig. 4: The VIM-2 phenotype–fitness landscape as a function of EC50 and AMP concentration.
Fig. 5: Sub-MIC selection behaviour of VIM-2 variants.
Fig. 6: Non-specific epistasis varies across selection conditions.

Similar content being viewed by others

Data availability

Sequencing data are available through the NCBI SRA, under BioProject accession PRJNA634597. All data generated or analysed during this study are included in this published article and its Supplementary Information.

Code availability

All code for analysis are publicly available. ‘DMS-FastQ-processing’ (v.1) can be found at https://github.com/johnchen93/DMS-FastQ-processing. ‘DMS-EC50’ (v.1) can be found at https://github.com/johnchen93/DMS-EC50.

References

  1. Dalziel, A. C., Rogers, S. M. & Schulte, P. M. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18, 4997–5017 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Kaltenbach, M. & Tokuriki, N. Dynamics and constraints of enzyme evolution. J. Exp. Zool. B 322, 468–487 (2014).

    Article  CAS  Google Scholar 

  3. Yi, X. & Dean, A. M. Adaptive landscapes in the age of synthetic biology. Mol. Biol. Evol. 36, 890–907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kemble, H., Nghe, P. & Tenaillon, O. Recent insights into the genotype–phenotype relationship from massively parallel genetic assays. Evol. Appl. 12, 1721–1742 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Curr. Opin. Struct. Biol. 42, 31–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nat. Rev. Genet. 7, 337–348 (2006).

    Article  PubMed  Google Scholar 

  8. Rodrigues, J. V. et al. Biophysical principles predict fitness landscapes of drug resistance. Proc. Natl Acad. Sci. USA 113, E1470–1478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartl, D. L., Dykhuizen, D. E. & Dean, A. M. Limits of adaptation: the evolution of selective neutrality. Genetics 111, 655–674 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lunzer, M., Miller, S. P., Felsheim, R. & Dean, A. M. The biochemical architecture of an ancient adaptive landscape. Science 310, 499–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Lundin, E., Tang, P.-C., Guy, L., Näsvall, J. & Andersson, D. I. Experimental determination and prediction of the fitness effects of random point mutations in the biosynthetic enzyme HisA. Mol. Biol. Evol. 35, 704–718 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dasmeh, P. & Serohijos, A. W. R. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution. Proteins Struct. Funct. Bioinforma. 86, 1242–1250 (2018).

    Article  CAS  Google Scholar 

  15. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7, e32472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wylie, C. S. & Shakhnovich, E. I. A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proc. Natl Acad. Sci. USA 108, 9916–9921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chou, H.-H., Delaney, N. F., Draghi, J. A. & Marx, C. J. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLoS Genet. 10, e1004149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bershtein, S., Mu, W., Serohijos, A. W. R., Zhou, J. & Shakhnovich, E. I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 49, 133–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Mehlhoff, J. D. et al. Collateral fitness effects of mutations. Proc. Natl Acad. Sci. USA 117, 11597–11607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dean, A. M. A molecular investigation of genotype by environment interactions. Genetics 139, 19–33 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of global epistasis. Proc. Natl Acad. Sci. USA 115, E7550–E7558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fowler, D. M. et al. High-resolution mapping of protein sequence–function relationships. Nat. Methods 7, 741–746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler, D. M., Stephany, J. J. & Fields, S. Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat. Protoc. 9, 2267–2284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Melnikov, A., Rogov, P., Wang, L., Gnirke, A. & Mikkelsen, T. S. Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Res. 42, e112 (2014).

  28. Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun. 8, 15695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mavor, D. et al. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife 5, e15802 (2016).

  30. Noda-García, L. et al. Chance and pleiotropy dominate genetic diversity in complex bacterial environments. Nat. Microbiol. 4, 1221–1230 (2019).

    Article  PubMed  Google Scholar 

  31. Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Firnberg, E., Labonte, J. W., Gray, J. J. & Ostermeier, M. A comprehensive, high-resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 31, 1581–1592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacquier, H. et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc. Natl Acad. Sci. USA 110, 13067–13072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klesmith, J. R., Bacik, J.-P., Wrenbeck, E. E., Michalczyk, R. & Whitehead, T. A. Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning. Proc. Natl Acad. Sci. USA 114, 2265–2270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, J. Z., Fowler, D. M. & Tokuriki, N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meer, J. et al. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. Nat. Commun. 7, 10911 (2016).

  39. Thompson, S., Zhang, Y., Ingle, C., Reynolds, K. A. & Kortemme, T. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. eLife 9, e53476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kemble, H. et al. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. Sci. Adv. 6, eabb2236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Starita, L. M. et al. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proc. Natl Acad. Sci. USA 110, E1263–E1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flynn, J. M. et al. Comprehensive fitness maps of Hsp90 show widespread environmental dependence. eLife 9, e53810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Horovitz, A., Fleisher, R. C. & Mondal, T. Double-mutant cycles: new directions and applications. Curr. Opin. Struct. Biol. 58, 10–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Salinas, V. H. & Ranganathan, R. Coevolution-based inference of amino acid interactions underlying protein function. eLife 7, e34300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mavor, D. et al. Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biol.Open 7, bio036103 (2018).

  46. Rockah-Shmuel, L., Tóth-Petróczy, Á. & Tawfik, D. S. Systematic mapping of protein mutational space by prolonged drift reveals the deleterious effects of seemingly neutral mutations. PLoS Comput. Biol. 11, e1004421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Westhoff, S. et al. The evolution of no-cost resistance at sub-MIC concentrations of streptomycin in Streptomyces coelicolour. ISME J. 11, 1168–1178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, A. et al. Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive colour test for detection of antibiotics and genotoxic agents. Antimicrob. Agents Chemother. 55, 1204–1210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jasinska, W. et al. Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nat. Ecol. Evol. 4, 437–452 (2020).

    Article  PubMed  Google Scholar 

  52. Fröhlich, C. et al. Cryptic β-lactamase evolution is driven by low β-lactam concentrations. mSphere https://doi.org/10.1128/mSphere.00108-21 (2021).

  53. Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Baquero, F., Negri, M. C., Morosini, M. I. & Blázquez, J. Selection of very small differences in bacterial evolution. Int. Microbiol. 1, 295–300 (1998).

    CAS  PubMed  Google Scholar 

  55. Drlica, K. & Zhao, X. Mutant selection window hypothesis updated. Clin. Infect. Dis. 44, 681–688 (2007).

    Article  PubMed  Google Scholar 

  56. Blondeau, J. M. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach. Vet. Dermatol. 20, 383–396 (2009).

    Article  PubMed  Google Scholar 

  57. Das, S. G., Direito, S. O., Waclaw, B., Allen, R. J. & Krug, J. Predictable properties of fitness landscapes induced by adaptational tradeoffs. eLife 9, e55155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Domingo, J., Baeza-Centurion, P. & Lehner, B. The causes and consequences of genetic interactions (epistasis). Annu. Rev. Genomics Hum. Genet. 20, 433–460 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, G. et al. Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat. Chem. Biol. 15, 1120–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Nishikawa, K. K., Hoppe, N., Smith, R., Bingman, C. & Raman, S. Epistasis shapes the fitness landscape of an allosteric specificity switch. Nat. Commun. 12, 5562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Baier, F. et al. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. eLife 8, e40789 (2019).

  63. Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J. & de Visser, J. A. G. M. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol. Biol. Evol. 30, 1779–1787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bank, C., Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32, 229–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Manrubia, S. et al. From genotypes to organisms: state-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys. Life Rev. 38, 55–106 (2021).

  66. Araya, C. L. et al. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function. Proc. Natl Acad. Sci. USA 109, 16858–16863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palmer, A. C. et al. Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat. Commun. 6, 7385 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Miton, C. M. & Tokuriki, N. How mutational epistasis impairs predictability in protein evolution and design. Protein Sci. 25, 1260–1272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Russ, D. et al. Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat. Commun. 11, 2029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tack, D. S. et al. The genotype–phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10847 (2021).

  72. Steinberg, B. & Ostermeier, M. Environmental changes bridge evolutionary valleys. Sci. Adv. 2, e1500921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zwart, M. P. et al. Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 β-lactamase. Heredity 121, 406–421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Sebaugh, J. L. & McCray, P. D. Defining the linear portion of a sigmoid-shaped curve: bend points. Pharm. Stat. 2, 167–174 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Serohijos, P. Dasmeh and members of the Tokuriki laboratory for insightful comments on the manuscript. We thank the Canadian Institute of Health Research Foundation Grant (FDN-148437, N.T.) for the financial support. N.T. is a Michael Smith Foundation of Health Research career investigator.

Author information

Authors and Affiliations

Authors

Contributions

J.Z.C. was responsible for conceptualization, software, formal analysis, investigation, methodology, writing the original draft and reviewing and editing it. D.M.F. contributed to software, validation, methodology and reviewed and edited the manuscript. N.T. was involved in conceptualization, supervision, funding acquisition, project administration and reviewing and editing of the manuscript.

Corresponding author

Correspondence to N. Tokuriki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Example dose–response curves for EC50 calculation based on deep sequencing data.

Each pair of plots represent the two replicate dose–response curves of a single variant in the library. The solid curve indicates the results of fitting to the sigmoidal equation (2). The horizontal dashed line marks the average population size of the variant in the non-selected conditions. Dose–response curves shown here were randomly sampled from the entire pool of all variants with a successful fit.

Extended Data Fig. 2 Heat map of EC50 values for all variants.

Each cell in the heat map represents the EC50 value of a single amino acid variant. Synonymous variants are indicated by dark grey circles and variants that are not present in the library are in grey. The x-axis under the heat map indicates the wild-type residue and position, while the y-axis indicates the variant residue at that position. The colouring is scaled so that the centre of the colour range (white) is at the EC50-wt of 84 µg/mL.

Extended Data Fig. 3 Replicate correlation of DMS fitness scores.

Each scatterplot shows the replicate fitness scores of all variants under selection in (a) 4.0, (b) 8.0, (c) 16, (d) 32, (e) 64, (f) 128 and (g) 256 µg/mL AMP. In each panel, variants are coloured according to mutation type with the legend in the lower right. The solid black line indicate the line of best fit for a linear regression, with the R2 and P value of the regression above each plot.

Extended Data Fig. 4 Fit parameters for the phenotype–fitness relationship across AMP concentrations.

Each plot shows one of the final fitted value of a parameter in the four-parameter sigmoidal curve in equation (3) when fitted to the fitness scores and EC50 values from the AMP concentration indicated in the x-axis. (a) Plot for maximum fitness (fmax) (b) Plot for minimum fitness (fmin), (c) Plot for Hill coefficient (n) (d) Plot for the inflection point (X50). For all plots, solid points represent AMP concentrations where the linear portion of the fit were not limited by the AMP concentration range, while hollow points indicate the opposite. For d), a linear regression was conducted with the solid data points. The black line indicates the line of best fit for a linear regression, and the R2, P value and the equation of the fit shown at the top.

Extended Data Fig. 5 Fitted parameters of sigmoidal phenotype–fitness relationships.

a All parameters shown are calculated from a fit to equation (3). b Values are displayed as optimal fit ± S.D. The S.D.s are calculated as the square root of the variance for the parameter, estimated during fitting by the ‘SciPy.optimize.cuve_fit’ function.

Supplementary information

Reporting Summary

Peer Review Information

Supplementary Data

Supplementary Data 1, Fitness scores of VIM-2 variants across AMP concentrations; Data 2, EC50 of all VIM-2 variants; Data 3, EC50 of VIM-2 variants measured individually; Data 4, OD600 of VIM-2 libraries after 6 h of selection at 37 °C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.Z., Fowler, D.M. & Tokuriki, N. Environmental selection and epistasis in an empirical phenotype–environment–fitness landscape. Nat Ecol Evol 6, 427–438 (2022). https://doi.org/10.1038/s41559-022-01675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01675-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing