Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase

A preprint version of the article is available at bioRxiv.

Abstract

Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme’s conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positive epistasis drives the evolution of OXA-48.
Fig. 2: Kinetic changes drive the evolution of OXA-48.
Fig. 3: Evolution of a catalytically superior ensemble.

Similar content being viewed by others

Data availability

Cryogenic crystal structures are deposited at the Protein Data Bank under the PDB IDs 8PEA (F72L), 8PEB (Q5) and 8PEC (Q5-CAZ). Jupyter notebooks and input files required to replicate the MD simulations and analyses of the OXA-48 variants, as well as trajectories and MD snapshots, are available on the University of Bristol Research Data Storage Facility (RDSF) at https://doi.org/10.5523/bris.phtj9yrbdkrq2t6n53k84evkg. The repository furthermore contains PDB structures of all ensemble refinements presented in this work. All other data are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Miton, C. M., Buda, K. & Tokuriki, N. Epistasis and intramolecular networks in protein evolution. Curr. Opin. Struct. Biol. 69, 160–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Miton, C. M., Chen, J. Z., Ost, K., Anderson, D. W. & Tokuriki, N. Statistical analysis of mutational epistasis to reveal intramolecular interaction networks in proteins. Methods Enzymol. 643, 243–280 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Miton, C. M. & Tokuriki, N. How mutational epistasis impairs predictability in protein evolution and design. Protein Sci. 25, 1260–1272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem 79, 471–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Buda, K., Miton, C. M. & Tokuriki, N. Higher-order epistasis creates idiosyncrasy, confounding predictions in protein evolution. Nat. Commun. https://doi.org/10.1038/s41467-023-44333-5 (2023).

  6. Yang, G. et al. Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat. Chem. Biol. 15, 1120–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Meini, M. R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, E. C. et al. Laboratory evolution of protein conformational dynamics. Curr. Opin. Struct. Biol. 50, 49–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Romero-Rivera, A., Garcia-Borras, M. & Osuna, S. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 7, 8524–8532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sethi, A., Eargle, J., Black, A. A. & Luthey-Schulten, Z. Dynamical networks in tRNA:protein complexes. Proc. Natl Acad. Sci. USA 106, 6620–6625 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jimenez-Oses, G. et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 10, 431–436 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez, M. M., Abriata, L. A., Tomatis, P. E. & Vila, A. J. Optimization of conformational dynamics in an epistatic evolutionary trajectory. Mol. Biol. Evol. 33, 1768–1776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossi, M.-A., Palzkill, T., Almeida, F. C. L. & Vila, A. J. Slow protein dynamics elicits new enzymatic functions by means of epistatic interactions. Mol. Biol. Evol. 39, msac194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao, Q. et al. Loop motion in triosephosphate isomerase is not a simple open and shut case. J. Am. Chem. Soc. 140, 15889–15903 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Dellus-Gur, E. et al. Negative epistasis and evolvability in TEM-1 β-lactamase—the thin line between an enzyme’s conformational freedom and disorder. J. Mol. Biol. 427, 2396–2409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kries, H., Bloch, J. S., Bunzel, H. A., Pinkas, D. M. & Hilvert, D. Contribution of oxyanion stabilization to kemp eliminase efficiency. ACS Catal. 10, 4460–4464 (2020).

    Article  CAS  Google Scholar 

  20. Buller, A. R. et al. Directed evolution mimics allosteric activation by stepwise tuning of the conformational ensemble. J. Am. Chem. Soc. 140, 7256–7266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeymer, C., Zschoche, R. & Hilvert, D. Optimization of enzyme mechanism along the evolutionary trajectory of a computationally designed (retro-)aldolase. J. Am. Chem. Soc. 139, 12541–12549 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Blazeck, J. et al. Bypassing evolutionary dead ends and switching the rate-limiting step of a human immunotherapeutic enzyme. Nat. Catal. 5, 952–967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fröhlich, C. et al. Cryptic β-lactamase evolution is driven by low β-lactam concentrations. mSphere 6, e00108–e00121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fröhlich, C. et al. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere 4, e00024–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stojanoski, V. et al. Mechanistic basis of OXA-48-like β-lactamases’ hydrolysis of carbapenems. ACS Infect. Dis. 7, 445–460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tooke, C. L. et al. β-Lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 431, 3472–3500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pitout, J. D. D., Peirano, G., Kock, M. M., Strydom, K. A. & Matsumura, Y. The global ascendency of OXA-48-type carbapenemases. Clin. Microbiol Rev. 33, e00102–e00119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hirvonen, V. H. A., Mulholland, A. J., Spencer, J. & van der Kamp, M. W. Small changes in hydration determine cephalosporinase activity of OXA-48 β-lactamases. ACS Catal. 10, 6188–6196 (2020).

    Article  CAS  Google Scholar 

  29. Bunzel, H. A., Anderson, J. L. R. & Mulholland, A. J. Designing better enzymes: insights from directed evolution. Curr. Opin. Struct. Biol. 67, 212–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Naas, T. et al. β-Lactamase database (BLDB)—structure and function. J. Enzym. Inhib. Med Chem. 32, 917–919 (2017).

    Article  CAS  Google Scholar 

  31. Tacao, M., Silva, I. & Henriques, I. Culture-independent methods reveal high diversity of OXA-48-like genes in water environments. J. Water Health 15, 519–525 (2017).

    Article  PubMed  Google Scholar 

  32. Knies, J. L., Cai, F. & Weinreich, D. M. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Mol. Biol. Evol. 34, 1040–1054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez, L. J., Bahr, G., Gonzalez, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Page, M. G. P. The kinetics of non-stoichiometric bursts of β-lactam hydrolysis catalysed by class C β-lactamases. Biochem J. 295, 295–304 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Page, M. G. P. Extended-spectrum β-lactamases: structure and kinetic mechanism. Clin. Microbiol. Infect. 14, 63–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ledent, P. & Frère, J. M. Substrate-induced inactivation of the OXA2 β-lactamase. Biochem J. 295, 871–878 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogt, A. D. & Di Cera, E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. King, D. T., King, A. M., Lal, S. M., Wright, G. D. & Strynadka, N. C. Molecular mechanism of avibactam-mediated β-lactamase inhibition. ACS Infect. Dis. 1, 175–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Tooke, C. L. et al. Tautomer-specific deacylation and Ω-loop flexibility explain the carbapenem-hydrolyzing broad-spectrum activity of the KPC-2 β-lactamase. J. Am. Chem. Soc. 145, 7166–7180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Docquier, J. D. et al. Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 16, 540–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, S. H., Kozuch, J. & Boxer, S. G. The interplay of electrostatics and chemical positioning in the evolution of antibiotic resistance in TEM β-lactamases. ACS Cent. Sci. 7, 1996–2008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bunzel, H. A. et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat. Chem. 13, 1017–1022 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Buda, K., Miton, C. M., Fan, X. C. & Tokuriki, N. Molecular determinants of protein evolvability. Trends Biochem. Sci. 48, 751–760 (2023).

  44. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Tamer, Y. T. et al. High-order epistasis in catalytic power of dihydrofolate reductase gives rise to a rugged fitness landscape in the presence of trimethoprim selection. Mol. Biol. Evol. 36, 1533–1550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palzkill, T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front. Mol. Biosci. 5, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maria-Solano, M. A., Serrano-Hervas, E., Romero-Rivera, A., Iglesias-Fernandez, J. & Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function. Chem. Commun. 54, 6622–6634 (2018).

    Article  CAS  Google Scholar 

  48. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Fröhlich, C., Sørum, V., Tokuriki, N., Johnsen, P. J. & Samuelsen, Ø. Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 25, 2429–2436 (2022).

    Article  Google Scholar 

  50. Lund, B. A., Christopeit, T., Guttormsen, Y., Bayer, A. & Leiros, H. K. Screening and design of inhibitor scaffolds for the antibiotic resistance oxacillinase-48 (OXA-48) through surface plasmon resonance screening. J. Med. Chem. 59, 5542–5554 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Lund, B. A. et al. The biological assembly of OXA-48 reveals a dimer interface with high charge complementarity and very high affinity. FEBS J. 285, 4214–4228 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Case, D. A. et al. AMBER 2018 (University of California, San Francisco, 2018).

  57. Le Grand, S., Gotz, A. W. & Walker, R. C. SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 184, 374–380 (2013).

    Article  ADS  Google Scholar 

  58. Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vanquelef, E. et al. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roe, D. R. & Cheatham, T. E. 3rd PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

MD simulations were conducted using the computational facilities of the Advanced Computing Research Centre, University of Bristol. C.F. thanks the PhD schools NFIF, IBA and Biocat for their funding. H.A.B. thanks the SNSF for funding (P5R5PB_210999, PZ00P3_208691 and P400PB_194329). M.W.v.d.K. thanks BBSRC for funding (BB/M026280/1). N.T. thanks the Canadian Institute of Health Research (CIHR) for the project grant (AWD-019305). H.-K.S.L. thanks the Centre for New Antibacterial Strategies for the project grant. This work is part of a project that has received funding from the European Research Council under the European Horizon 2020 research and innovation programme (PREDACTED Advanced Grant Agreement no. 101021207) to A.J.M. A.J.M. and H.A.B. also thank BBSRC (grant no. BB/R016445/1) and EPSRC (EP/M013219/1 and EP/M022609/1) for funding. This work was carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www.bris.ac.uk/acrc/).

Author information

Authors and Affiliations

Authors

Contributions

C.F., H.A.B. and N.T. conceived the study. C.F. performed directed evolution, selection and cloning and assayed dose–response curves. C.F. and K.B. expressed and purified enzymes. C.F. determined thermostabilities. K.B., C.F. and H.A.B. assayed enzyme kinetics. K.B. and N.T. performed the statistical analysis. H.A.B. performed, and H.A.B., A.J.M. and M.W.v.d.K. analysed, the MD simulations. C.F. crystallized proteins, and C.F. and H.-K.S.L. solved structures and refined structures. C.F., H.A.B., P.J.J. and N.T. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Christopher Fröhlich or Nobuhiko Tokuriki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Canan Atilgan, Christos Karamitros, Alejandro J. Vila and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Tables 1–8.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, C., Bunzel, H.A., Buda, K. et al. Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01117-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01117-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing