Profiling circulating tumour cells and other biomarkers of invasive cancers

Abstract

During cancer progression, many tumours shed circulating tumour cells (CTCs) and other biomarkers into the bloodstream. The analysis of CTCs offers the prospect of collecting a liquid biopsy from a patient’s blood to predict and monitor therapeutic responses and tumour recurrence. In this Review, we discuss progress towards the isolation and recovery of bulk CTCs from whole blood samples for the identification of cells with high metastatic potential. We provide an overview of the techniques that initially pointed to the clinical significance of CTCs and describe the key requirements for clinical applications of CTC analysis. We also summarize recent advances that permit the functional and biochemical phenotypes of CTCs to be characterized, and discuss the potential roles of these CTC characteristics in the formation of metastatic lesions. Moreover, we discuss the use of circulating tumour DNA and exosomes as markers for early cancer diagnosis and for the monitoring of cancer progression. Next-generation technologies and biomarkers for invasive cancers should allow for the unequivocal determination of the metastatic potential of CTCs, and for the meaningful analysis of circulating tumour DNA and exosomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CTC phenotypic properties.
Fig. 2: Timeline of significant discoveries related to CTC biology, to the clinical significance of CTCs and to technologies that have advanced the understanding of the properties of CTCs and their clinical utility.
Fig. 3: Rare-cell capture technologies isolate CTCs with high levels of sensitivity and specificity.
Fig. 4: Devices for the characterization of migratory behaviour (a functional phenotype of CTCs).
Fig. 5: Devices and assays for the characterization of the biochemical phenotypes of CTCs.
Fig. 6: Analysis of CTC clusters.
Fig. 7: Exosomes as alternative targets for liquid biopsies.

References

  1. 1.

    Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Alix-Panabieres, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Pantel, K., Alix-Panabières, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Joosse, S. A., Gorges, T. M. & Pantel, K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7, 1–11 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Dasgupta, A., Lim, A. R. & Ghajar, C. M. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol. Oncol. 11, 40–61 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13, 920–928 (2007).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Romiti, A. et al. Circulating tumor cells count predicts survival in colorectal cancer patients. J. Gastrointestin. Liver Dis. 23, 279–284 (2014).

    PubMed  Google Scholar 

  9. 9.

    Bidard, F.-C. et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 15, 406–414 (2014).

    PubMed  Article  Google Scholar 

  10. 10.

    Lorente, D. et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur. Urol. 70, 985–992 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Franken, B. et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 14, R133 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    van Dalum, G. et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int. J. Oncol. 46, 1361–1368 (2015).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Karl, A., Tritschler, S., Hofmann, S., Stief, C. G. & Schindlbeck, C. Perioperative search for circulating tumor cells in patients undergoing radical cystectomy for bladder cancer. Eur. J. Med. Res. 14, 487–490 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Riethdorf, S. et al. Prognostic impact of circulating tumor cells for breast cancer patients treated in the neoadjuvant ‘Geparquattro’ trial. Clin. Cancer Res. 23, 5384–5393 (2017).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Strilic, B. & Offermanns, S. Intravascular survival and extravasation of tumor cells. Cancer Cell 32, 282–293 (2017).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Pantel, K. & Speicher, M. R. The biology of circulating tumor cells. Oncogene 35, 1216–1224 (2015).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Tsuji, T., Ibaragi, S. & Hu, G. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 69, 7135–7139 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Alix-Panabieres, C., Mader, S. & Pantel, K. Epithelial–mesenchymal plasticity in circulating tumor cells. J. Mol. Med. 95, 133–142 (2017).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Green, B. J. et al. Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew. Chem. Int. Ed. 55, 1252–1265 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Bae, Y. K., Choi, J. E., Kang, S. H. & Lee, S. J. Epithelial–mesenchymal transition phenotype is associated with clinicopathological factors that indicate aggressive biological behavior and poor clinical outcomes in invasive breast cancer. J. Breast Cancer 18, 256–263 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Wu, S. et al. Classification of circulating tumor cells by epithelial–mesenchymal transition markers. PLoS ONE 10, e0123976 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Yao, D., Dai, C. & Peng, S. Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Mol. Cancer Res. 9, 1608–1620 (2011).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Ashworth, T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 14, 146–149 (1869).

    Google Scholar 

  29. 29.

    Alexander, R. F. & Spriggs, A. I. The differential diagnosis of tumour cells in circulating blood. J. Clin. Pathol. 13, 414–424 (1960).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Salgado, I. et al. Tumour cells in the blood. Can. Med. Assoc. J. 81, 619–622 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Racila, E. et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl Acad. Sci. USA 95, 4589–4594 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Mikolajczyk, S. D. et al. Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J. Oncol. 2011, 252361 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Pecot, C. V. et al. A novel platform for detection of CK+ and CK CTCs. Cancer Discov. 1, 580–586 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Adams, A. et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130, 8633–8641 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Yoon, H. J. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotech. 8, 735–741 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Besant, J. D. et al. Velocity valleys enable efficient capture, sorting and analysis of nanoparticle-bound circulating tumour cells. Nanoscale 7, 6278–6285 (2015).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Ferreira, M. M., Ramani, V. C. & Jeffrey, S. S. Circulating tumor cell technologies. Mol. Oncol. 10, 374–394 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Yoon, H. J., Kozminsky, M. & Nagrath, S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 8, 1995–2017 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Alix-Panabieres, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra47 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Mohamadi, R. M. et al. Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. Angew. Chem. Int. Ed. 127, 141–145 (2015).

    Article  Google Scholar 

  45. 45.

    Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotech. 12, 274–281 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Mego, M. et al. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int. J. Cancer 129, 417–423 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Hu, X. et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl Acad. Sci. USA 102, 15757–15761 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Makker, K., Agarwal, A. & Sharma, R. K. Magnetic activated cell sorting (MACS): utility in assisted reproduction. Indian J. Exp. Biol. 46, 491–497 (2008).

    PubMed  Google Scholar 

  51. 51.

    Millner, L. M., Linder, M. W. & Valdes, R. Jr Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann. Clin. Lab. Sci. 43, 295–304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ibrahim, S. F. & Van Den Engh, G. Flow cytometry and cell sorting. Adv. Biochem. Eng. Biotechnol. 106, 19–39 (2007).

    CAS  PubMed  Google Scholar 

  53. 53.

    Wu, C.-H. et al. Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 7, 8816–8823 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Tsai, J. H. & Yang, J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192–2206 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Tellez-Gabriel, M., Brown, H. K., Young, R., Heymann, M.-F. & Heymann, D. The challenges of detecting circulating tumor cells in sarcoma. Front. Oncol. 6, 202–210 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Gabriel, M. T., Calleja, L. R., Chalopin, A., Ory, B. & Heymann, D. Circulating tumor cells: a review of non-EpCAM-based approaches for cell enrichment and isolation. Clin. Chem. 62, 571–581 (2016).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Wit, Sde et al. The detection of EpCAM+ and EpCAM circulating tumor cells. Sci. Rep. 5, 12270 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5, 180ra48 (2013).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Park, M. H. et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J. Am. Chem. Soc. 139, 2741–2749 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Che, J. et al. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget 7, 12748–12760 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Hvichia, G. E. et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138, 2894–2904 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Kaldjian, E. et al. Multi-level analysis of circulating tumor cells in advanced prostate cancer using AccuCyte® – CyteFinder®. Paper presented at 22nd Annual Prostate Cancer Foundation Scientific Retreat 8–10 October (2015); http://rarecyte.com/documents/1465944263.pdf

  65. 65.

    Demierre, N., Braschler, T., Muller, R. & Renaud, P. Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B Chem. 132, 388–396 (2008).

    CAS  Article  Google Scholar 

  66. 66.

    Ng, S. Y. et al. Label-free impedance detection of low levels of circulating endothelial progenitor cells for point-of-care diagnosis. Biosens. Bioelectron. 25, 1095–1101 (2010).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Jin, C. et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip 14, 32–44 (2014).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Abonnenc, M. et al. Programmable interactions of functionalized single bioparticles in a dielectrophoresis-based microarray chip. Anal. Chem. 85, 8219–8224 (2013).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Manaresi, N. et al. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circuits 38, 2297–2305 (2003).

    Article  Google Scholar 

  70. 70.

    Werner, S. L. et al. Analytical validation and capabilities of the Epic CTC platform: enrichment-free circulating tumour cell detection and characterization. J. Circ. Biomark. 4, 1 (2015).

    Article  Google Scholar 

  71. 71.

    Kowalik, A., Kowalewska, M. & Góźdź, S. Current approaches for avoiding the limitations of circulating tumor cells detection methods — implications for diagnosis and treatment of patients with solid tumors. Transl. Res. 185, 58–84.e15 (2017).

  72. 72.

    Halo, T. L. et al. Nanoflares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl Acad. Sci. USA 111, 17104–17109 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2012).

    Article  CAS  Google Scholar 

  74. 74.

    Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Kakinuma, T. & Hwang, S. T. Chemokines, chemokine receptors, and cancer metastasis. J. Leukoc. Biol. 79, 639–651 (2006).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Chow, M. T. & Luster, A. D. Chemokines in cancer. Cancer Immunol. Res. 2, 1125–1131 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Wong, I. Y. et al. Collective and individual migration following the epithelial-mesenchymal transition. Nat. Mater. 13, 1063–1071 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Zhang, Y., Zhang, W. & Qin, L. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew. Chem. Int. Ed. 126, 2376–2380 (2014).

    Article  Google Scholar 

  79. 79.

    Roussos, E. T., Condeelis, J. S. & Antonia, P. Chemotaxis in cancer. Nat. Rev. Cancer 11, 573–587 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Chen, Y.-C. et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 5, 9980 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Poudineh, M. et al. Profiling functional and biochemical phenotypes of circulating tumor cells using a two-dimensional sorting device. Angew. Chem. Int. Ed. 56, 163–168 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Zijlstra, A., Lewis, J., DeGryse, B., Stuhlmann, H. & Quigley, J. P. The inhibition of tumor cell invasation and subsequent metastasis through the regulation of in vivo tumor cell motility by the tetrspanin CD151. Cancer Cell 13, 221–234 (2011).

    Article  CAS  Google Scholar 

  83. 83.

    Reymond, N., d’Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    William, J., Zervantonakis, I. K., Roger, D. & Link, C. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci. 70, 1335–1356 (2013).

    Article  CAS  Google Scholar 

  85. 85.

    Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Jeon, J. S., Zervantonakis, I. K., Chung, S., Kamm, R. D. & Charest, J. L. In vitro model of tumor cell extravasation. PLoS ONE 8, e56910 (2013).

  87. 87.

    Yee, S. S. et al. A novel approach for next-generation sequencing of circulating tumor cells. Mol. Genet. Genom. Med. 4, 395–406 (2016).

    CAS  Article  Google Scholar 

  88. 88.

    De Luca, F. et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7, 26107–26119 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Krebs, M. G. et al. Molecular analysis of circulating tumour cells — biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Carter, L. et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat. Med. 23, 114–119 (2016).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Ramirez, J.-M. et al. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin. Chem. 60, 214–221 (2014).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Alix-Panabières, C. & Pantel, K. Clinical prospects of liquid biopsies. Nat. Biomed. Eng. 1, 0065 (2017).

    Article  Google Scholar 

  93. 93.

    Denève, E. et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59, 1384–1392 (2013).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Alix-Panabie’res, C. et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin. Chem. 53, 536–537 (2007).

    Article  CAS  Google Scholar 

  95. 95.

    Sinkala, E. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun. 8, 14622 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Han, T. et al. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh. Migr. 1, 395–403 (2013).

    Article  Google Scholar 

  97. 97.

    Zhang, Y. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87, 9761–9768 (2015).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Phan, L. M., Yeung, S.-C. J. & Lee, M.-H. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 11, 1–19 (2014).

  99. 99.

    Gialeli, C., Theocharis, A. D. & Karamanos, N. K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16–27 (2011).

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Ren, F. et al. Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: a systematic review and meta-analysis. PLoS ONE 10, e0135544 (2015).

  101. 101.

    Son, K. J., Shin, D. S., Kwa, T., Gao, Y. & Revzin, A. Micropatterned sensing hydrogels integrated with reconfigurable microfluidics for detecting protease release from cells. Anal. Chem. 85, 11893–11901 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Yang, G., Li, L., Rana, R. K. & Zhu, J. J. Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase. Carbon NY 61, 357–366 (2013).

    CAS  Article  Google Scholar 

  103. 103.

    Timm, K. N., Kennedy, B. W. C. & Brindle, K. M. Imaging tumor metabolism to assess disease progression and treatment response. Clin. Cancer Res. 22, 5196–5203 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Andree, K. C., van Dalum, G. & Terstappen, L. W. M. M. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 10, 395–407 (2016).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Stoecklein, N. H., Fischer, J. C., Niederacher, D. & Terstappen, L. W. M. M. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev. Mol. Diagn. 16, 147–164 (2016).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Fidler, I. J. Immune stimualtion–inhibition of experimental cancer metastasis. Cancer Res. 34, 491–498 (1974).

    CAS  PubMed  Google Scholar 

  108. 108.

    Hong, Y., Fang, F. & Zhang, Q. Circulating tumor cell clusters: what we know and what we expect (Review). Int. J. Oncol. 49, 2206–2216 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Sharma, D., Brummel-Ziedins, K. E., Bouchard, B. A. & Holmes, C. E. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J. Cell. Physiol. 229, 1005–1015 (2014).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Au, S. H. et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl Acad. Sci. USA 113, 4947–4952 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Gkountela, S. & Aceto, N. Stem-like features of cancer cells on their way to metastasis. Biol. Direct 11, 33 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Perakis, S. & Speicher, M. R. Emerging concepts in liquid biopsies. BMC Med. 15, 75 (2017).

  115. 115.

    Ma, M. et al. ‘Liquid biopsy’ — ctDNA detection with great potential and challenges. Ann. Transl. Med 16, 235 (2015).

  116. 116.

    Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Keller, S., Ridinger, J., Rupp, A.-K., Janssen, J. W. & Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9, 86 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Shao, H., Chung, J. & Issadore, D. Diagnostic technologies for circulating tumour cells and exosomes. Biosci. Rep. 36, e00292 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

  120. 120.

    Whiteside, T. L. The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 15, 1293–1310 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Zhou, Y. G. et al. Interrogating circulating microsomes and exosomes using metal nanoparticles. Small 12, 727–732 (2016).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Sharma, S., Gillespie, B. M., Palanisamy, V. & Gimzewski, J. K. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27, 14394–14400 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Malloy, A. & Carr, B. Nanoparticle tracking analysis — the halo system. Part. Part. Syst. Charact. 23, 197–204 (2006).

    Article  Google Scholar 

  126. 126.

    Wunsch, B. H. et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotech. 11, 936–940 (2016).

    CAS  Article  Google Scholar 

  127. 127.

    Alix-Panabières, C. & Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6, 479–491 (2016).

  128. 128.

    Alix-Panabières, C. & Pantel, K. Real-time liquid biopsy: circulating tumor cells versus circulating tumor DNA. Ann. Transl. Med. 1, 18 (2013).

  129. 129.

    Madic, J. et al. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int. J. Cancer 136, 2158–2165 (2015).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Bardelli, A. & Pantel, K. Liquid biopsies, what we do not know (yet). Cancer Cell 31, 172–179 (2017).

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Pantel, K. Blood-based analysis of circulating cell-free DNA and tumor cells for early cancer detection. PLoS Med. 13, e1002205 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Fernandez-Cuesta, L. et al. Identification of circulating tumor DNA for the early detection of mmall-cell lung cancer. EBioMedicine 10, 117–123 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Dawson, S.-J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Francis, G. & Stein, S. Circulating cell-free tumour DNA in the management of cancer. Int. J. Mol. Sci. 16, 14122–14142 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Siravegna, G. & Bardelli, A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 15, 449 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Gold, B., Cankovic, M., Furtado, L. V., Meier, F. & Gocke, C. D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility?: A report of the association for molecular pathology. J. Mol. Diagn. 17, 209–224 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Han, X., Wang, J. & Sun, Y. Circulating tumor DNA as biomarkers for cancer detection. Genom. Proteom. Bioinforma. 15, 59–72 (2017).

    Article  Google Scholar 

  139. 139.

    Bettegowda., C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Gorges, T. M. et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin. Chem. 62, 1504–1515 (2016).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

S.O.K. acknowledges the Canadian Institutes of Health Research, the National Science and Engineering Research Council, the National Institutes of Health, and the Ontario Research Fund for their support of work in this area. K.P. acknowledges European Research Council Advanced Investigator Grant DISSECT, European Research Council Proof of Concept grant CTCapture_2.0 and European Union–Innovative Medicines Initiative grant CANCER-ID for support.

Author information

Affiliations

Authors

Contributions

All authors contributed to compiling content for this work, and to writing and editing the manuscript.

Corresponding authors

Correspondence to Klaus Pantel or Shana O. Kelley.

Ethics declarations

Competing interests

S.O.K., M.P. and E.H.S. are inventors on patents related to technologies for liquid biopsy and rare-cell profiling. The other authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poudineh, M., Sargent, E.H., Pantel, K. et al. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat Biomed Eng 2, 72–84 (2018). https://doi.org/10.1038/s41551-018-0190-5

Download citation

Further reading