Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustained and comparative habitability beyond Earth

A Publisher Correction to this article was published on 09 January 2024

This article has been updated

Abstract

Although we have a reasonable understanding of the physical and chemical conditions required to support the growth and reproduction of organisms, we still have only a rudimentary grasp of the geophysical conditions required to sustain those conditions over geological timescales. We propose that a strengthening of the interface between geophysics and biology is required to quantify sustained habitability and ultimately to mature the science of comparative habitability. Comparative habitability will inform our understanding of the common principles that allow habitability to be sustained on different planetary bodies, and whether habitability is predictable or contingent for a given set of planetary body characteristics. These developments are enabled by missions in our Solar System, including those to icy bodies such as Europa, Enceladus and Titan, in combination with telescopes allowing us to study habitability on exoplanets, thus providing essential insights into processes that can enable sustained habitability. Comparative habitability will help to determine whether Earth is a rare outpost of conditions suitable for a multi-billion-year biosphere, or whether the conditions that allowed for sustained habitability here are common in the Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Instantaneously habitable conditions can be achieved with few ingredients.
Fig. 2: Sustained habitability in the ocean of Enceladus.
Fig. 3: Sustained habitability in a subsurface ocean.
Fig. 4: The science of comparative habitability.

Similar content being viewed by others

Change history

References

  1. Shock, E. L. & Holland, M. E. Quantitative habitability. Astrobiology 7, 839–851 (2007).

    Article  ADS  Google Scholar 

  2. Cockell, C. S. et al. Habitability – a review. Astrobiology 16, 89–117 (2016).

    Article  ADS  Google Scholar 

  3. Méndez, A. et al. Habitability models for astrobiology. Astrobiology 21, 1017–1027 (2021).

    Article  ADS  Google Scholar 

  4. Petkowski, J. J., Bains, W. & Seager, S. On the potential of silicon as a building block for life. Life 10, 84 (2020).

    Article  ADS  Google Scholar 

  5. Chivian, D. et al. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322, 275–278 (2008).

    Article  ADS  Google Scholar 

  6. Remick, K. A. & Helmann, J. D. The elements of life: a biocentric tour of the periodic table. Adv. Microb. Physiol. 82, 1–127 (2023).

    Article  Google Scholar 

  7. Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).

    Article  ADS  Google Scholar 

  8. Cockell, C. S., Samuels, T. & Stevens, A. H. Habitability is binary, but it is used by astrobiologists to encompass continuous ecological questions. Astrobiology 21, 1017–1027 (2021).

    Google Scholar 

  9. Vance, S. D. et al. Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys Res. Planets 123, 180–205 (2018).

    Article  ADS  Google Scholar 

  10. Meadows, V. S. et al. The habitability of Proxima Centauri b: environmental states and observational discriminants. Astrobiology 18, 133–189 (2022).

    Article  ADS  Google Scholar 

  11. Kaltenegger, L., Lin, Z. & Rugheimer, S. Finding signs of life on transiting Earthlike planets: high-resolution transmission spectra of Earth through time around FGKM host stars. Astrophys. J. 904, 10 (2020).

    Article  ADS  Google Scholar 

  12. Des Marais, D. J. et al. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002).

    Article  ADS  Google Scholar 

  13. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article  ADS  Google Scholar 

  14. Kaltenegger, L. How to characterize habitable worlds and signs of life. Ann. Rev. Astron Astrophys. 55, 433–485 (2017).

    Article  ADS  Google Scholar 

  15. Ramirez, R. M. A more comprehensive habitable zone for finding life on other planets. Geosciences 8, 280 (2018).

    Article  ADS  Google Scholar 

  16. Lin, Z., Macdonald, R. J., Kaltenegger, L. & Wilson, D. J. Differentiating modern and prebiotic Earth scenarios for TRAPPIST-1e: high-resolution transmission spectra and predictions for JWST. Mon. Not. R. Astron. Soc. 505, 3562–3578 (2021).

    Article  ADS  Google Scholar 

  17. Hoehler, T. M., Bains, W., Davila, A., Parenteau, M. N. & Pohorille, A. in Planetary Astrobiology (eds Meadows, V. et al.) 37–69 (Univ. Arizona, 2020).

  18. Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 9306–9310 (2005).

    Article  ADS  Google Scholar 

  19. Kminek, G. et al. Report of the COSPAR Mars Special Regions Colloquium. Adv. Space Res. 46, 811–829 (2010).

    Article  ADS  Google Scholar 

  20. Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  ADS  Google Scholar 

  21. Cockell, C. S., Wordsworth, R., Whiteford, N. & Higgins, P. M. Minimal units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).

    Article  ADS  Google Scholar 

  22. Suttle, M. D., King, A. J., Schofield, P. F., Bates, H. & Russell, S. S. The aqueous alteration of CM chondrites, a review. Geochim. Cosmochim. Acta 299, 219–256 (2021).

    Article  ADS  Google Scholar 

  23. Schulze-Makuch, D. & Crawford, I. A. Was there an early habitability window for Earth’s moon? Astrobiology 18, 985–988 (2018).

    Article  ADS  Google Scholar 

  24. Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).

    Article  Google Scholar 

  25. Stoker, C. et al. Habitability of the Phoenix landing site. J. Geophys. Res. 115, E00E20 (2010).

    Article  Google Scholar 

  26. Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale crater, Mars. Science 356, eaah6849 (2017).

    Article  ADS  Google Scholar 

  27. Parkinson, C. D., Liang, M.-C., Yung, Y. L. & Kirschvink, J. L. Habitability of Enceladus:planetary conditions for life. Orig. Life Evol. Biosph. 38, 355–369 (2008).

    Article  ADS  Google Scholar 

  28. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (National Academies, 2022).

  29. Waite, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Science 460, 487–490 (2009).

    Google Scholar 

  30. Postberg, F. et al. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493 (2023).

    Article  ADS  Google Scholar 

  31. Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    Article  ADS  Google Scholar 

  32. Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).

    Article  ADS  Google Scholar 

  33. Affholder, A., Guyot, F., Sauterey, B., Ferrière, R. & Mazevet, S. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).

    Article  ADS  Google Scholar 

  34. Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    Article  ADS  Google Scholar 

  35. Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R. & Bills, B. G. Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).

    Article  ADS  Google Scholar 

  36. Hedman, M. M. et al. An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500, 182–184 (2013).

    Article  ADS  Google Scholar 

  37. Nimmo, F., Porco, C. & Mitchell, C. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J. 148, 46 (2014).

    Article  ADS  Google Scholar 

  38. Postberg, F., Schmidt, J., Hillier, J., Kempf, S. & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).

    Article  ADS  Google Scholar 

  39. Nakajima, M. & Ingersoll, A. P. Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus 272, 309–318 (2016).

    Article  ADS  Google Scholar 

  40. Teolis, B. et al. Enceladus plume structure and time variability: comparison of Cassini observations. Astrobiology 17, 926–940 (2017).

    Article  ADS  Google Scholar 

  41. Fifer, L. M., Catling, D. C. & Toner, J. D. Chemical fractionation modeling of plumes indicates a gas-rich, moderately alkaline Enceladus ocean. Planet. J. 3, 191 (2022).

    Article  Google Scholar 

  42. Glein, C. R. & Waite, J. H. The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020).

    Article  ADS  Google Scholar 

  43. Vance, S. D., Hand, K. P. & Pappalardo, R. T. Geophysical controls of chemical disequilibria in Europa and other wet, rocky worlds. Geophys. Res. Lett. 43, 4871–4879 (2016).

    Article  ADS  Google Scholar 

  44. Vance, S. D. et al. Hydrothermal systems in small ocean planets. Astrobiology 7, 987–1005 (2007).

    Article  ADS  Google Scholar 

  45. German, C. R. et al. Ocean system science to inform the exploration of ocean worlds. Oceanography 35, 16–22 (2022).

    Google Scholar 

  46. Roberts, H. H. The fluffy core of Enceladus. Icarus 258, 54–66 (2015).

    Article  ADS  Google Scholar 

  47. Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article  ADS  Google Scholar 

  48. Ray, C. et al. Oxidation processes diversify the metabolic menu on Enceladus. Icarus 364, 114248 (2021).

    Article  Google Scholar 

  49. Hand, K. P., Carlson, R. W. & Chyba, C. F. Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7, 1006–1022 (2007).

    Article  ADS  Google Scholar 

  50. Kattenhorn, S. A. & Prockter, L. M. Evidence for subduction in the ice shell of Europa. Nat. Geosci. 7, 762–767 (2014).

    Article  ADS  Google Scholar 

  51. Matsuyama, I. et al. Ocean tidal heating in icy satellites with solid shells. Icarus 312, 208–230 (2018).

    Article  ADS  Google Scholar 

  52. Spencer, J. R. & Nimmo, F. Enceladus: an active ice world in the Saturn System. Annu. Rev. Earth Planet. Sci. 41, 693–717 (2013).

    Article  ADS  Google Scholar 

  53. Navarro-González, R., McKay, C. P. & Mvondo, D. N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412, 61–64 (2011).

    Article  ADS  Google Scholar 

  54. Tenelanda, L. I., Parra, J. L., Cuartas-Restrepo, P. & Zuluuaga, J. I. Enceladus as a potential niche for methanogens and estimation of its biomass. Life 11, 1182 (2021).

    Article  ADS  Google Scholar 

  55. Higgins, P. M., Glein, C. R. & Cockell, C. S. Instantaneous habitable windows in the parameter space of Enceladus’ ocean. J. Geophys. Res. 126, e2021JE006951 (2021).

    Article  ADS  Google Scholar 

  56. van Bodegom, P. Microbial maintenance: a critical review on its quantification. Microb. Ecol. 53, 513–23 (2007).

    Article  ADS  Google Scholar 

  57. McKenzie, S. M. et al. The Enceladus Orbilander mission concept: balancing return and resources in the search for life. Planet. Sci. J. 2, 77 (2021).

    Article  Google Scholar 

  58. Perl, S. M. et al. A proposed geobiology-driven nomenclature for astrobiological in situ observations and sample analyses. Astrobiology 21, 954–967 (2021).

    Article  ADS  Google Scholar 

  59. Liao, Y., Nimmo, F. & Neufeld, J. A. Heat production and tidally driven fluid flow in the permeable core of Enceladus. J. Geophys. Res. 125, e2019JE006209 (2020).

    Article  ADS  Google Scholar 

  60. Jia, X., Kivelson, M. G., Khurana, K. K. & Kurth, W. S. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2, 459–464 (2018).

    Article  ADS  Google Scholar 

  61. McKinnon, W. B. Convective instability in Europa’s floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999).

    Article  ADS  Google Scholar 

  62. Yin, A. & Pappalardo, R. T. Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn’s moon Enceladus. Icarus 260, 409–439 (2015).

    Article  ADS  Google Scholar 

  63. Barr, A. C. & Preuss, L. J. On the origin of south polar folds on Enceladus. Icarus 208, 499–503 (2010).

    Article  ADS  Google Scholar 

  64. Howell, S. M. & Pappalardo, R. T. Can Earth-like plate tectonics occur in ocean world ice shells? Icarus 322, 69–79 (2019).

    Article  ADS  Google Scholar 

  65. Schwieterman, E. W., Reinhard, C. T., Olson, S. L., Harman, C. E. & Lyons, T. W. A limited habitable zone for complex life. Astrophys. J. 878, 19 (2019).

    Article  ADS  Google Scholar 

  66. Silva, L., Vladilo, G., Schulte, P. M., Murante, G. & Provenzale, A. From climate models to planetary habitability: temperature constraints for complex life. Int. J. Astrobiol. 16, 244–265 (2017).

    Article  ADS  Google Scholar 

  67. Ballmer, M. D. & Noack, L. The diversity of exoplanets: from interior dynamics to surface expressions. Elements 17, 245–250 (2021).

    Article  ADS  Google Scholar 

  68. Schulze-Makuch, D. et al. A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 11, 1041–1052 (2011).

    Article  ADS  Google Scholar 

  69. Rushby, A. J., Johnson, M., Mills, B. J. W., Watson, A. J. & Claire, M. W. Long-term planetary habitability and the carbonate-silicate cycle. Astrobiology 18, 469–480 (2018).

    Article  ADS  Google Scholar 

  70. Kruijver, A., Höning, D. & van Westrenen, W. Carbon cycling and habitability of massive Earth-like exoplanets. Planet. Sci. J. 2, 208 (2021).

    Article  Google Scholar 

  71. Kitzmann, D. et al. The unstable CO2 feedback cycle on ocean planets. Mon. Not. R. Astron. Soc. 452, 3752–3758 (2015).

    Article  ADS  Google Scholar 

  72. Edson, A. R., Kasting, J. F., Pollard, D., Lee, S. & Bannon, P. R. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12, 562–571 (2012).

    Article  ADS  Google Scholar 

  73. Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75 (2018).

    Article  ADS  Google Scholar 

  74. Noack, L. & Breur, D. Plate tectonics on rocky exoplanets: Influence of initial conditions and mantle rheology. Planet. Space Sci. 98, 41–49 (2014).

    Article  ADS  Google Scholar 

  75. Stamenković, V. & Seager, S. Emerging possibilities and insuperable limitations of exogeophysics: the example of plate tectonics. Astrophys. J. 825, 78 (2016).

    Article  ADS  Google Scholar 

  76. Ikoo, S. M. & Elkins-Tanton, L. T. The fate of water within Earth and super-Earths and implications for plate tectonics. Phil. Trans. R. Soc. A 375, 20150394 (2017).

    Article  Google Scholar 

  77. Spiegel, D. S., Fortney, J. J. & Sotin, C. Structure of exoplanets. Proc. Natl Acad. Sci. USA 111, 12622–12677 (2014).

    Article  ADS  Google Scholar 

  78. O’Neill, C., Lowman, J. & Wasiliev, J. The effect of galactic chemical evolution on terrestrial exoplanet composition and tectonics. Icarus 352, 114025 (2020).

    Article  Google Scholar 

  79. Wakeford, H. R. & Dalba, P. A. The exoplanet perspective on future ice giant exploration. Phil. Trans. R. Soc. A. 378, 2020005420200054 (2020).

  80. Raymond, C. A. et al. Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nat. Astron. 4, 741–747 (2020).

    Article  ADS  Google Scholar 

  81. Rothschild, L. J. The evolution of photosynthesis…again? Phil. Trans. R. Soc. B 363, 2787–2801 (2008).

    Article  Google Scholar 

  82. Falkowski, P. G. The biological and geological contingencies for the rise of oxygen on Earth. Photosynth. Res. 107, 7–10 (2011).

    Article  Google Scholar 

  83. Bottke, W. F. & Norman, M. D. The late heavy bombardment. Ann. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Article  ADS  Google Scholar 

  84. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Ann. Rev. Earth Planet. Sci. 33, 163–161 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CSC thanks the Science and Technology Facilities Council (STFC) for support under grant no. ST/V000586/1. P.M.H. acknowledges support from Natural Sciences and Engineering Research Council of Canada (NSERC) grant (No. 453949) awarded to B. Sherwood Lollar. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Government sponsorship acknowledged. We thank B. Insua for work on Figs. 3 and 4. We thank F. Nimmo for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The paper was conceived by C.S.C. and M.S. All authors contributed to discussions on paper content. C.S.C. drafted the manuscript and all authors contributed to editing and development of the final paper.

Corresponding author

Correspondence to Charles S. Cockell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ramses Ramirez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockell, C.S., Simons, M., Castillo-Rogez, J. et al. Sustained and comparative habitability beyond Earth. Nat Astron 8, 30–38 (2024). https://doi.org/10.1038/s41550-023-02158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02158-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing