Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The oxygen bottleneck for technospheres

Abstract

As oxygen is essential for respiration and metabolism for multicellular organisms on Earth, its presence may be crucial for the development of a complex biosphere on other planets. And because life itself, through photosynthesis, contributed to creating our oxygen-rich atmosphere, oxygen has long been considered as a possible biosignature. Here we consider the relationship between atmospheric oxygen and the development of technology. We argue that only planets with substantial oxygen partial pressure (\(p_{{\mathrm{O}}_2}\)) will be capable of developing advanced technospheres and hence technosignatures that we can detect. But open-air combustion (needed, for example, for metallurgy), is possible only in Earth-like atmospheres when \(p_{{\mathrm{O}}_2}\) ≥ 18%. This limit is higher than the one needed to sustain a complex biosphere and multicellular organisms. We further review other possible planetary atmospheric compositions and conclude that oxygen is the most likely candidate for the evolution of technological species. Thus, the presence of \(p_{{\mathrm{O}}_2}\) ≥ 18% in exoplanet atmospheres may represent a contextual prior required for the planning and interpretation of technosignature searches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Planets capable of supporting high O2 concentrations and, hence, technological civilizations.
Fig. 2: Earth’s atmospheric O2 concentration over time.

Similar content being viewed by others

References

  1. Knoll, A. H. The Precambrian evolution of terrestrial life. In The Search for Extraterrestrial Life: Recent Developments (ed. Papagiannis, M. D.) 201–211 (Springer, 1985).

  2. Catling, D. C., Glein, C. R., Zahnle, K. J. & McKay, C. P. Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5, 415–438 (2005).

    Article  ADS  Google Scholar 

  3. Judson, O. P. The energy expansions of evolution. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0138 (2017).

  4. Socas-Navarro, H. et al. Concepts for future missions to search for technosignatures. Acta Astronaut. 182, 446–453 (2021).

    Google Scholar 

  5. Wright, J. T. et al. The case for technosignatures: why they may be abundant, long-lived, highly detectable, and unambiguous. Astrophys. J. Lett. 927, L30 (2022).

    Article  ADS  Google Scholar 

  6. Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, 2017).

  7. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen; a critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  ADS  Google Scholar 

  8. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  ADS  Google Scholar 

  9. Buick, R. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. B 363, 2731–2743 (2008).

    Article  Google Scholar 

  10. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. https://doi.org/10.1126/sciadv.aax1420 (2020).

  11. Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  ADS  Google Scholar 

  12. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  ADS  Google Scholar 

  13. Krause, A. J., Mills, B. J. W., Merdith, A. S., Lenton, T. M. & Poulton, S. W. Extreme variability in atmospheric oxygen levels in the late Precambrian. Sci. Adv. https://doi.org/10.1126/sciadv.abm8191 (2022).

  14. Budisa, N., Kubyshkin, V. & Schulze-Makuch, D. Fluorine-rich planetary environments as possible habitats for life. Life 4, 374–385 (2014).

    Article  ADS  Google Scholar 

  15. Knoll, A. H. Food for early animal evolution. Nature 548, 528–530 (2017).

    Article  ADS  Google Scholar 

  16. Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  ADS  Google Scholar 

  17. Lingam, M. & Loeb, A. Life in the Cosmos: From Biosignatures to Technosignatures (Harvard Univ. Press, 2021).

  18. Went, F. W. The size of man. Am. Sci. 56, 400–413 (1968).

    Google Scholar 

  19. Jones, D. & Kaufman, M. Combusion of hydrocarbons on purified fluorine. Combust. Flame 67, 217–221 (1987).

    Google Scholar 

  20. Razus, D. Nitrous oxide: oxidizer and promoter of hydrogen and hydrocarbon combustion. Ind. Eng. Chem. Res. 61, 11329–11346 (2022).

    Article  Google Scholar 

  21. Biteau, H., Fuentes, A., Marlair, G. & Torero, J. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture. Exp. Therm. Fluid Sci. 34, 282–289 (2010).

    Article  Google Scholar 

  22. Gowlett, J. A. J. The discovery of fire by humans: a long and convoluted process. Phil. Trans. R. Soc. B 371, 20150164 (2016).

    Article  Google Scholar 

  23. Hlubik, S. et al. Hominin fire use in the Okote member at Koobi Fora, Kenya: new evidence for the old debate. J. Hum. Evol. 133, 214–229 (2019).

    Google Scholar 

  24. Zink, K. D. & Lieberman, D. E. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531, 500–503 (2016).

    Article  ADS  Google Scholar 

  25. Wrangham, R. Catching Fire: How Cooking Made Us Human (Profile, 2010).

  26. Mellars, P. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc. Natl Acad. Sci. USA 103, 9381–9386 (2006).

    Article  ADS  Google Scholar 

  27. Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa. Proc. Natl Acad. Sci. USA 109, 847–852 (2012).

    Article  ADS  Google Scholar 

  28. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev. 2, 81–98 (2015).

    Article  Google Scholar 

  29. Smil, V. Energy and Civilization: A History (MIT Press, 2017).

  30. Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).

    Article  ADS  Google Scholar 

  31. Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    Article  ADS  Google Scholar 

  32. Lenton, T. M. & Watson, A. J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).

    Google Scholar 

  33. Wildman, R. A. et al. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32, 457 (2004).

    Article  ADS  Google Scholar 

  34. Chaloner, W. G. Fossil charcoal as an indicator of palaeoatmospheric oxygen level. J. Geol. Soc. 146, 171–174 (1989).

    Article  ADS  Google Scholar 

  35. Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    Article  ADS  Google Scholar 

  36. Lingam, M., Balbi, A. & Mahajan, S. M. A Bayesian analysis of technological intelligence in land and oceans. Astrophys. J. 945, 23 (2023).

    Article  ADS  Google Scholar 

  37. Drake, F. The Radio Search for Intelligent Extraterrestrial Life. In Current Aspects of Exobiology (ed. by Mamikunian, G. and Briggs, M. H.) 323–345 (Elsevier, 1965).

  38. Forget, F. & Leconte, J. Possible climates on terrestrial exoplanets. Phil. Trans. R. Soc. 372, 20130084 (2014).

  39. Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Oxygen and evolution. Science 316, 557–558 (2007).

    Article  Google Scholar 

  40. Costa, K., Accorsi-Mendonça, D., Moraes, D. & Machado, B. Evolution and physiology of neural oxygen sensing. Front. Physiol. https://doi.org/10.3389/fphys.2014.00302 (2014).

Download references

Acknowledgements

We are grateful to D. Catling and M. Lingam for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Balbi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ariel Anbar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbi, A., Frank, A. The oxygen bottleneck for technospheres. Nat Astron 8, 39–43 (2024). https://doi.org/10.1038/s41550-023-02112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02112-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing