Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets

Abstract

The conventional observables to identify a habitable or inhabited environment in exoplanets, such as an ocean glint or abundant atmospheric O2, will be challenging to detect with present or upcoming observatories. Here we suggest a new signature. A low carbon abundance in the atmosphere of a temperate rocky planet, relative to other planets of the same system, traces the presence of a substantial amount of liquid water, plate tectonics and/or biomass. Here we show that JWST can already perform such a search in some selected systems such as TRAPPIST-1 via the CO2 band at 4.3 μm, which falls in a spectral sweet spot where the overall noise budget and the effect of cloud and/or hazes are optimal. We propose a three-step strategy for transiting exoplanets: detection of an atmosphere around temperate terrestrial planets in about 10 transits for the most favourable systems; assessment of atmospheric carbon depletion in about 40 transits; and measurements of O3 abundance to disentangle between a water- versus biomass-supported carbon depletion in about 100 transits. The concept of carbon depletion as a signature for habitability is also applicable for next-generation direct-imaging telescopes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of our strategy to detect habitable exoplanetary environment via CO2 depletion.
Fig. 2: CO2 depletion as a signature of liquid water and/or life.
Fig. 3: Detectability of CO2 depletion as an habiosignature with JWST.
Fig. 4: Optimum wavelength range for transmission spectroscopy considering the effects of hazes and stellar contamination.
Fig. 5: Disentangling between the water- or life-based origin of a CO2 depletion habiosignature.

Similar content being viewed by others

Code availability

The PandExo and TIERRA codes, used for this paper, are publicly available.

References

  1. JWST Transiting Exoplanet Community Early Release Science Team Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023).

    Article  ADS  Google Scholar 

  2. Krissansen-Totton, J., Thompson, M., Galloway, M. L. & Fortney, J. J. Understanding planetary context to enable life detection on exoplanets and test the Copernican principle. Nat. Astron. 6, 189–198 (2022).

    Article  ADS  Google Scholar 

  3. Fauchez, T. J. et al. TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J. 2, 106 (2021).

    Article  Google Scholar 

  4. Felton, R. C. et al. The role of atmospheric exchange in false-positive biosignature detection. J. Geophys. Res. Planets 127, e06853 (2022).

    Article  Google Scholar 

  5. Sergeev, D. E. et al. The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II. Moist cases—the two waterworlds. Planet. Sci. J. 3, 212 (2022).

    Article  Google Scholar 

  6. Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).

    Article  ADS  Google Scholar 

  7. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    Article  ADS  Google Scholar 

  8. Wunderlich, F. et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astron. Astrophys. 624, A49 (2019).

    Article  Google Scholar 

  9. Fauchez, T. J. et al. Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nat. Astron. 4, 372–376 (2020).

    Article  ADS  Google Scholar 

  10. Pidhorodetska, D., Fauchez, T. J., Villanueva, G. L., Domagal-Goldman, S. D. & Kopparapu, R. K. Detectability of molecular signatures on TRAPPIST-1e through transmission spectroscopy simulated for future space-based observatories. Astrophys. J. Lett. 898, L33 (2020).

    Article  ADS  Google Scholar 

  11. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    Article  ADS  Google Scholar 

  12. Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).

    Article  ADS  Google Scholar 

  13. Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).

    Article  ADS  Google Scholar 

  14. Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).

    Article  ADS  Google Scholar 

  15. Nutzman, P. & Charbonneau, D. Design considerations for a ground-based transit search for habitable planets orbiting M dwarfs. Publ. Astron. Soc. Pac. 120, 317–327 (2008).

    Article  ADS  Google Scholar 

  16. Triaud, A. H. M. J. in ExoFrontiers (ed. Madhusudhan, N.) Ch. 6 (IOP Publishing, 2021).

  17. Snellen, I. A. G., de Kok, R. J., le Poole, R., Brogi, M. & Birkby, J. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys. J. 764, 182 (2013).

    Article  ADS  Google Scholar 

  18. Leung, M., Meadows, V. S. & Lustig-Yaeger, J. High-resolution spectral discriminants of ocean loss for M-dwarf terrestrial exoplanets. Astron. J. 160, 11 (2020).

    Article  ADS  Google Scholar 

  19. Webb, R. K. Exoplanet Atmospheres at High Spectral Resolution in the Near-Infrared. PhD thesis, Univ. Warwick (2023); https://wrap.warwick.ac.uk/175056/

  20. López-Morales, M. et al. Optimizing ground-based observations of O2 in Earth analogs. Astron. J. 158, 24 (2019).

    Article  ADS  Google Scholar 

  21. Lovis, C. et al. Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. Astron. Astrophys. 599, A16 (2017).

    Article  Google Scholar 

  22. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article  ADS  Google Scholar 

  23. Kopparapu, R. K., Wolf, E. T. & Meadows, V. S. in Planetary Astrobiology (eds Meadows, V. S. et al.) 449–476 (University of Arizona Press, 2020).

  24. Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D. & Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 365, 715–721 (1993).

    Article  ADS  Google Scholar 

  25. Stephan, K. et al. Specular reflection on Titan: liquids in Kraken Mare. Geophys. Res. Lett. 37, L07104 (2010).

    Article  ADS  Google Scholar 

  26. Lustig-Yaeger, J. et al. Detecting ocean glint on exoplanets using multiphase mapping. Astron. J. 156, 301 (2018).

    Article  ADS  Google Scholar 

  27. Kameda, S. et al. Ecliptic north–south symmetry of hydrogen geocorona. Geophys. Res. Lett. 44, 11,706–11,712 (2017).

    Article  Google Scholar 

  28. Elkins-Tanton, L. T. & Seager, S. Coreless terrestrial exoplanets. Astrophys. J. 688, 628–635 (2008).

    Article  ADS  Google Scholar 

  29. Mendillo, M., Withers, P. & Dalba, P. A. Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nat. Astron. 2, 287–291 (2018).

    Article  ADS  Google Scholar 

  30. Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).

    Article  ADS  Google Scholar 

  31. Villanueva, G. L., Mumma, M. J. & Magee-Sauer, K. Ethane in planetary and cometary atmospheres: transmittance and fluorescence models of the ν7 band at 3.3 μm. J. Geophys. Res. Planets 116, E08012 (2011).

    Article  ADS  Google Scholar 

  32. Haqq-Misra, J., Fauchez, T. J., Schwieterman, E. W. & Kopparapu, R. Disruption of a planetary nitrogen cycle as evidence of extraterrestrial agriculture. Astrophys. J. Lett. 929, L28 (2022).

    Article  ADS  Google Scholar 

  33. van Thienen, P. et al. in Geology and Habitability of Terrestrial Planets Vol. 24 (eds Fishbaugh, K. E. et al.) Ch. 5 (Springer, 2007).

  34. Pierrehumbert, R. T. Principles of Planetary Climate (Cambridge Univ. Press, 2010).

  35. Shibuya, T. et al. Decrease of seawater CO2 concentration in the late archean: an implication from 2.6Ga seafloor hydrothermal alteration. Precambrian Res. 236, 59–64 (2013).

    Article  ADS  Google Scholar 

  36. Lécuyer, C., Simon, L. & Guyot, F. Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sci. Lett. 181, 33–40 (2000).

    Article  ADS  Google Scholar 

  37. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  ADS  Google Scholar 

  38. Sethi, D., Butler, T., Shuhaili, F. & Vaidyanathan, V. Diatoms for carbon sequestration and bio-based manufacturing. Biology 9, 217 (2020).

    Article  Google Scholar 

  39. Gaillard, F. et al. The diverse planetary ingassing/outgassing paths produced over billions of years of magmatic activity. Space Sci. Rev. 217, 22 (2021).

    Article  ADS  Google Scholar 

  40. Archer, D. E. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).

    Article  ADS  Google Scholar 

  41. Bednaršek, N., Možina, J., Vogt, M., O’Brien, C. & Tarling, G. A. The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean. Earth Syst. Sci. Data 4, 167–186 (2012).

    Article  ADS  Google Scholar 

  42. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  ADS  Google Scholar 

  43. Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    Article  ADS  Google Scholar 

  44. Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).

    Article  ADS  Google Scholar 

  45. Bains, W., Petkowski, J. J., Rimmer, P. B. & Seager, S. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies. Proc. Natl Acad. Sci. USA 118, e2110889118 (2021).

    Article  Google Scholar 

  46. McKay, C. P. Titan as the abode of life. Life 6, 8 (2016).

    Article  ADS  Google Scholar 

  47. Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article  Google Scholar 

  48. Thompson, M. A., Krissansen-Totton, J., Wogan, N., Telus, M. & Fortney, J. J. The case and context for atmospheric methane as an exoplanet biosignature. Proc. Natl Acad. Sci. USA 119, e2117933119 (2022).

    Article  Google Scholar 

  49. Gao, P., Hu, R., Robinson, T. D., Li, C. & Yung, Y. L. Stability of CO2 atmospheres on desiccated M dwarf exoplanets. Astrophys. J. 806, 249 (2015).

    Article  ADS  Google Scholar 

  50. Diamond, L. W. & Akinfiev, N. N. Solubility of CO2 in water from −1.5 to 100°C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib. 208, 265–290 (2003).

    Article  Google Scholar 

  51. Mitchell, M. J., Jensen, O. E., Cliffe, K. A. & Maroto-Valer, M. M. A model of carbon dioxide dissolution and mineral carbonation kinetics. Proc. R. Soc. Lond. Ser. A 466, 1265–1290 (2010).

    ADS  Google Scholar 

  52. Zeebe, R. E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40, 141–165 (2012).

    Article  ADS  Google Scholar 

  53. Tomkinson, T., Lee, M. R., Mark, D. F. & Smith, C. L. Sequestration of Martian CO2 by mineral carbonation. Nat. Commun. 4, 2662 (2013).

    Article  ADS  Google Scholar 

  54. Milliken, R. E. & Rivkin, A. S. Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nat. Geosci. 2, 258–261 (2009).

    Article  ADS  Google Scholar 

  55. Graham, R. J. & Pierrehumbert, R. Thermodynamic and energetic limits on continental silicate weathering strongly impact the climate and habitability of wet, rocky worlds. Astrophys. J. 896, 115 (2020).

    Article  ADS  Google Scholar 

  56. Klein, F. & Garrido, C. J. Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126, 147–160 (2011).

    Article  ADS  Google Scholar 

  57. Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    Article  ADS  Google Scholar 

  58. Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article  ADS  Google Scholar 

  59. Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Article  Google Scholar 

  60. Kasting, J. F., Pollack, J. B. & Ackerman, T. P. Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335–355 (1984).

    Article  ADS  Google Scholar 

  61. Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).

    Article  ADS  Google Scholar 

  62. Bean, J. L., Abbot, D. S. & Kempton, E. M. R. A statistical comparative planetology approach to the hunt for habitable exoplanets and life beyond the Solar System. Astrophys. J. Lett. 841, L24 (2017).

    Article  ADS  Google Scholar 

  63. Turbet, M. Two examples of how to use observations of terrestrial planets orbiting in temperate orbits around low mass stars to test key concepts of planetary habitability. Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics https://doi.org/10.48550/arXiv.2005.06512 (2019).

  64. Lehmer, O. R., Catling, D. C. & Krissansen-Totton, J. Carbonate–silicate cycle predictions of Earth-like planetary climates and testing the habitable zone concept. Nat. Commun. 11, 6153 (2020).

    Article  ADS  Google Scholar 

  65. Lovelock, J. E. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26, 2–10 (1974).

    Article  ADS  Google Scholar 

  66. Lenton, T. Earth System Science: A Very Short Introduction (Oxford Univ. Press, 2016); https://doi.org/10.1093/actrade/9780198718871.001.0001

  67. Arthur, R. & Nicholson, A. A Gaian habitable zone. Mon. Not. R. Astron. Soc. 521, 690–707 (2023).

    Article  ADS  Google Scholar 

  68. Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  ADS  Google Scholar 

  69. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  ADS  Google Scholar 

  70. Weiss, L. M. et al. The California-Kepler Survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. Astron. J. 155, 48 (2018).

    Article  ADS  Google Scholar 

  71. Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011).

    Article  ADS  Google Scholar 

  72. Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    Article  ADS  Google Scholar 

  73. Snellen, I. et al. Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. Astron. Astrophys. 576, A59 (2015).

    Article  Google Scholar 

  74. Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    Article  ADS  Google Scholar 

  75. Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D. & Turnbull, M. C. Stellar abundances in the solar neighborhood: the Hypatia Catalog. Astron. J. 148, 54 (2014).

    Article  ADS  Google Scholar 

  76. Putirka, K. D. & Rarick, J. C. The composition and mineralogy of rocky exoplanets: a survey of >4000 stars from the Hypatia Catalog. Am. Mineral. 104, 817–829 (2019).

    Article  ADS  Google Scholar 

  77. Gordon, I. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    Article  Google Scholar 

  78. de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69–72 (2016).

    Article  ADS  Google Scholar 

  79. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  80. Turbet, M. et al. A review of possible planetary atmospheres in the TRAPPIST-1 system. Space Sci. Rev. 216, 100 (2020).

    Article  ADS  Google Scholar 

  81. Komacek, T. D., Fauchez, T. J., Wolf, E. T. & Abbot, D. S. Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets. Astrophys. J. Lett. 888, L20 (2020).

    Article  ADS  Google Scholar 

  82. Stevenson, K. et al. Tell Me How I’m Supposed To Breathe With No Air: Measuring the Prevalence and Diversity of M-Dwarf Planet Atmospheres JWST Proposal. Cycle 1, ID 1981 (2021).

  83. Niraula, P. et al. The impending opacity challenge in exoplanet atmospheric characterization. Nat. Astron. 6, 1287–1295 (2022).

    Article  ADS  Google Scholar 

  84. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992).

    Article  ADS  Google Scholar 

  85. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    Article  ADS  Google Scholar 

  86. Doyle, L. R. et al. Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011).

    Article  ADS  Google Scholar 

  87. Southam, G., Westall, F. & Spohn, T. in Treatise on Geophysics (ed. Schubert, G.) 473–486 (2015).

  88. Batalha, N. E. & Line, M. R. Information content analysis for selection of optimal JWST observing modes for transiting exoplanet atmospheres. Astron. J. 153, 151 (2017).

    Article  ADS  Google Scholar 

  89. Witte, S., Helling, C., Barman, T., Heidrich, N. & Hauschildt, P. H. Dust in brown dwarfs and extra-solar planets. III. Testing synthetic spectra on observations. Astron. Astrophys. 529, A44 (2011).

    Article  ADS  Google Scholar 

  90. Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST & HST. Publ. Astron. Soc. Pac. 129, 064501 (2017).

    Article  ADS  Google Scholar 

  91. Deming, L. D. & Seager, S. Illusion and reality in the atmospheres of exoplanets. J. Geophys. Res. Planets 122, 53–75 (2017).

    Article  ADS  Google Scholar 

  92. Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    Article  ADS  Google Scholar 

  93. Wyttenbach, A. et al. Mass-loss rate and local thermodynamic state of the KELT-9 b thermosphere from the hydrogen Balmer series. Astron. Astrophys. 638, A87 (2020).

    Article  Google Scholar 

  94. Mollière, P. & Snellen, I. A. G. Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy. Astron. Astrophys. 622, A139 (2019).

    Article  ADS  Google Scholar 

  95. Zhang, Y. et al. The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021).

    Article  ADS  Google Scholar 

  96. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  Google Scholar 

  97. Wyttenbach, A. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b. Astron. Astrophys. 602, A36 (2017).

    Article  Google Scholar 

  98. Spake, J. J. et al. Helium in the eroding atmosphere of an exoplanet. Nature 557, 68–70 (2018).

    Article  ADS  Google Scholar 

  99. Knutson, H. A. et al. A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).

    Article  ADS  Google Scholar 

  100. de Wit, J., Gillon, M., Demory, B. O. & Seager, S. Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. Astron. Astrophys. 548, A128 (2012).

    Article  Google Scholar 

  101. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Article  ADS  Google Scholar 

  102. Mansfield, M. et al. Confirmation of water absorption in the thermal emission spectrum of the hot Jupiter WASP-77Ab with HST/WFC3. Astron. J. 163, 261 (2022).

    Article  ADS  Google Scholar 

  103. Kreidberg, L. et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573, 87–90 (2019).

    Article  ADS  Google Scholar 

  104. Dransfield, G. & Triaud, A. H. M. J. Colour–magnitude diagrams of transiting exoplanets—III. A public code, nine strange planets, and the role of phosphine. Mon. Not. R. Astron. Soc. 499, 505–519 (2020).

    Article  ADS  Google Scholar 

  105. Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021).

    Article  ADS  Google Scholar 

  106. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    Article  Google Scholar 

  107. Estep, M. F. & Hoering, T. C. Biogeochemistry of the stable hydrogen isotopes. Geochim. Cosmochim. Acta 44, 1197–1206 (1980).

    Article  ADS  Google Scholar 

  108. Woods, P. M. Carbon isotope measurements in the Solar System. Preprint at https://arxiv.org/abs/0901.4513 (2009).

  109. Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106, 117–134 (2001).

    Article  ADS  Google Scholar 

  110. Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

    Article  ADS  Google Scholar 

  111. Garcia, A. K., Cavanaugh, C. M. & Kacar, B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. ISME J. 15, 2183–2194 (2021).

    Article  Google Scholar 

  112. Jakosky, B. M. et al. Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018).

    Article  ADS  Google Scholar 

  113. Glidden, A., Seager, S., Huang, J., Petkowski, J. J. & Ranjan, S. Can carbon fractionation provide evidence for aerial biospheres in the atmospheres of temperate sub-Neptunes? Astrophys. J. 930, 62 (2022).

    Article  ADS  Google Scholar 

  114. Rodler, F. & López-Morales, M. Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 54 (2014).

    Article  ADS  Google Scholar 

  115. Ratner, M. I. & Walker, J. C. Atmospheric ozone and the history of life. J. Atmos. Sci. 29, 803–808 (1972).

    Article  ADS  Google Scholar 

  116. Barstow, J. K. & Irwin, P. G. J. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? Mon. Not. R. Astron. Soc. 461, L92–L96 (2016).

    Article  ADS  Google Scholar 

  117. Wang, F., Dreisinger, D., Jarvis, M. & Hitchins, T. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Miner. Eng. 131, 185–197 (2019).

    Article  Google Scholar 

  118. Kelemen, P. B. et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: review and new insights. Chem. Geol. 550, 119628 (2020).

    Article  Google Scholar 

  119. Loring, J. S. et al. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide. J. Phys. Chem. A 116, 4768–4777 (2012).

    Article  Google Scholar 

  120. Heng, K. & Kopparla, P. On the stability of super-Earth atmospheres. Astrophys. J. 754, 60 (2012).

    Article  ADS  Google Scholar 

  121. Turbet, M. et al. Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astron. Astrophys. 612, A86 (2018).

    Article  Google Scholar 

  122. Selsis, F., Despois, D. & Parisot, J. P. Signature of life on exoplanets: can Darwin produce false positive detections? Astron. Astrophys. 388, 985–1003 (2002).

    Article  ADS  Google Scholar 

  123. James, T. & Hu, R. Photochemical oxygen in non-1-bar CO2 atmospheres of terrestrial exoplanets. Astrophys. J. 867, 17 (2018).

    Article  ADS  Google Scholar 

  124. Kopparapu, R. K. et al. Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys. J. 845, 5 (2017).

    Article  ADS  Google Scholar 

  125. Afrin Badhan, M. et al. Stellar activity effects on moist habitable terrestrial atmospheres around M dwarfs. Astrophys. J. 887, 34 (2019).

    Article  ADS  Google Scholar 

  126. Segura, A. et al. Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5, 706–725 (2005).

    Article  ADS  Google Scholar 

  127. Liggins, P., Jordan, S., Rimmer, P. B. & Shorttle, O. Growth and evolution of secondary volcanic atmospheres: I. Identifying the geological character of hot rocky planets. J. Geophys. Res. Planets 127, e07123 (2022).

    Article  Google Scholar 

  128. Lichtenberg, T., Schaefer, L. K., Nakajima, M. & Fischer, R. A. Geophysical evolution during rocky planet formation. Preprint at https://arxiv.org/abs/2203.10023 (2022).

  129. Wordsworth, R. D., Schaefer, L. K. & Fischer, R. A. Redox evolution via gravitational differentiation on low-mass planets: implications for abiotic oxygen, water loss, and habitability. Astron. J. 155, 195 (2018).

    Article  ADS  Google Scholar 

  130. Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    Article  ADS  Google Scholar 

  131. Ortenzi, G. et al. Mantle redox state drives outgassing chemistry and atmospheric composition of rocky planets. Sci. Rep. 10, 10907 (2020).

    Article  ADS  Google Scholar 

  132. Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of water in terrestrial magma oceans and carbon-rich early atmospheres. Planet. Sci. J. 3, 93 (2022).

    Article  Google Scholar 

  133. Aschenbrenner, O. & Styring, P. Comparative study of solvent properties for carbon dioxide absorption. Energy Environ. Sci. 3, 1106–1113 (2010).

    Article  Google Scholar 

  134. Dalmolin, I. et al. Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water. Fluid Phase Equilib. 245, 193–200 (2006).

    Article  Google Scholar 

  135. Fogg, P. in Carbon Dioxide in Non-Aqueous Solvents At Pressures Less Than 200 KPA IUPAC Solubility Data Series (ed. Fogg, P. G.) ix (Pergamon, 1992); https://www.sciencedirect.com/science/article/pii/B9780080404950500051

  136. Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. On the habitability of Europa. Icarus 56, 246–254 (1983).

    Article  ADS  Google Scholar 

  137. Vance, S. D. et al. Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res. Planets 123, 180–205 (2018).

    Article  ADS  Google Scholar 

  138. Kitzmann, D. et al. The unstable CO2 feedback cycle on ocean planets. Mon. Not. R. Astron. Soc. 452, 3752–3758 (2015).

    Article  ADS  Google Scholar 

  139. Graham, R. J., Lichtenberg, T. & Pierrehumbert, R. T. CO2 ocean bistability on terrestrial exoplanets. J. Geophys. Res. Planets 127, e2022JE007456 (2022).

    Article  ADS  Google Scholar 

  140. Bercovici, D. & Ricard, Y. Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation. Geophys. J. Int. 152, 581–596 (2003).

    Article  ADS  Google Scholar 

  141. Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    Article  ADS  Google Scholar 

  142. Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J. Geophys. Res. 105, 21,471–21,481 (2000).

    Google Scholar 

  143. Zanazzi, J. J. & Triaud, A. H. M. J. The ability of significant tidal stress to initiate plate tectonics. Icarus 325, 55–66 (2019).

    Article  ADS  Google Scholar 

  144. Kral, Q. et al. Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Mon. Not. R. Astron. Soc. 479, 2649–2672 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Gillon and A. Babbin for insightful discussions. B.V.R. thanks the Heising-Simons Foundation for support. A.H.M.J.T.’s research received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement number 803193/BEBOP).

Author information

Authors and Affiliations

Authors

Contributions

A.H.M.J.T. and J.d.W. produced the main concepts and led the team behind this Perspective. All authors contributed to the writing of this paper. F.K., M.T., O.E.J. and M.P. focused their contribution to the geological discussion of the paper. M.T., J.J.P., A.G., S.S. and F.S. particularly contributed to the atmospheric and biosignature aspects of the paper. B.V.R. and P.N. mostly contributed to the discussion and figures related to observational aspects.

Corresponding authors

Correspondence to Amaury H. M. J. Triaud or Julien de Wit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Stephanie Olson and Maggie Thompson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triaud, A.H.M.J., de Wit, J., Klein, F. et al. Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nat Astron 8, 17–29 (2024). https://doi.org/10.1038/s41550-023-02157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02157-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing