Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Is the apparent absence of extraterrestrial technological civilizations down to the zoo hypothesis or nothing?

Abstract

The ‘Fermi paradox’ refers to the mismatch between a widely held expectation that advanced technological life should be common in the Universe—recently given impetus by the discovery that other planetary systems are common—and the absence of any evidence for it. Here we briefly review attempted solutions to the paradox and conclude that either (1) extraterrestrial technological civilizations are extremely rare (or absent) in the Galaxy or (2) they exist but are deliberately hiding from us, a scenario generally known as the ‘zoo hypothesis’. In this sense, we propose that the answer to the Fermi paradox is ‘the zoo hypothesis or nothing’. We argue that, given a strong commitment to the continued exploration of the Universe, humanity may be able to distinguish between these two alternatives within the next half-century.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The only known inhabited planet in the Universe, showing the continent of Africa where the only known technologically advanced species (Homo sapiens) arose after a total planet-wide evolutionary history spanning almost 4.6 Gyr.

Similar content being viewed by others

References

  1. Jones, E. M. Where is Everybody? An Account of Fermi’s Question Technical Report 5746675 (Office of Scientific and Technical Information, US Department of Energy, 1985); https://www.osti.gov/biblio/5746675

  2. Gray, R. H. The Fermi paradox is neither Fermi’s nor a paradox. Astrobiology 15, 195–199 (2015).

    Article  ADS  Google Scholar 

  3. Moynihan, T. in Expanding Worldviews: Astrobiology, Big History and Cosmic Perspectives (ed. Crawford, I. A.) 65–90 (Springer, 2021).

  4. Tarter, J. C. The evolution of life in the Universe: are we alone? Highlights Astron. 14, 14–25 (2007).

    ADS  Google Scholar 

  5. Wright, J. T. et al. The case for technosignatures: why they may be abundant, long-lived, highly detectable, and ubiquitous. Astrophys. J. Lett. 927, L30 (2022).

    Article  ADS  Google Scholar 

  6. Lingam, M. et al. Technosignatures: frameworks for their assessment. Astrophys. J. 943, 27 (2023).

    Article  ADS  Google Scholar 

  7. Brin, G. D. The ‘Great Silence’: the controversy concerning extraterrestrial intelligent life. Q. J. R. Astron. Soc. 24, 283–309 (1983).

    ADS  Google Scholar 

  8. Hart, M. H. Explanation for the absence of extraterrestrials on Earth. Q. J. R. Astron. Soc. 16, 128–135 (1975).

    ADS  Google Scholar 

  9. Ćirković, M. M. Fermi’s paradox: the last challenge for Copernicanism? Serb. Astron. J. 178, 1–20 (2009).

    Article  ADS  Google Scholar 

  10. Bryson, S. et al. The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. Astron. J. 161, 36 (2021).

    Article  ADS  Google Scholar 

  11. Davies, P. The Eerie Silence (Allen Lane, 2010).

  12. Webb, S. If the Universe is Teeming with Aliens, Where is Everybody? 2nd edn (Springer, 2015).

  13. Ćirković, M. M. The Great Silence (Oxford Univ. Press, 2018).

  14. Forgan, D. H. Solving Fermi’s Paradox (Cambridge Univ. Press, 2019).

  15. Döbler, N. A. Where will they be: hidden implications of solutions to the Fermi paradox. Int. J. Astrobiol. 21, 200–204 (2022).

    Article  ADS  Google Scholar 

  16. Lubin, P. A roadmap to interstellar flight. J. Br. Interplanet. Soc. 69, 40–72 (2016).

    ADS  Google Scholar 

  17. Long, K. F. Deep Space Propulsion: a Roadmap to Interstellar Flight (Springer, 2012).

  18. Crawford, I. A. in Handbook of Exoplanets (eds. Deeg, H. J. & Belmonte, J. A.) 3413–3431 (Springer, 2017).

  19. Wright, J. T., Mullan, B., Sigurdsson, S. & Povich, M. S. The Ĝ infrared search for extraterrestrial civilisations with large energy supplies: I. Background and justification. Astrophys. J. 792, 26 (2014).

    Article  ADS  Google Scholar 

  20. Crick, F. H. C. & Orgel, L. E. Directed panspermia. Icarus 19, 341–346 (1973).

    Article  ADS  Google Scholar 

  21. Xiang, M. & Rix, H.-W. A time-resolved picture of our Milky Way’s early formation history. Nature 603, 599–603 (2022).

    Article  ADS  Google Scholar 

  22. Crawford, I. A. How common are technological civilisations? Astron. Geophys. 38, 4.24–4.26 (1997).

    Article  Google Scholar 

  23. Carroll-Nellenback, J., Frank, A., Wright, J. & Scharf, C. The Fermi paradox and the Aurora effect: exo-civilisation, settlement, expansion, and steady states. Astron. J. 158, 117 (2019).

    Article  ADS  Google Scholar 

  24. Bracewell, R. N. in Extraterrestrials: Where are They? 2nd edn (eds Zuckerman, B. & Hart, M. H.) 34–39 (Cambridge Univ. Press, 1995).

  25. Landis, G. A. The Fermi paradox: an approach based on percolation theory. J. Br. Interplanet. Soc. 51, 163–166 (1998).

    ADS  Google Scholar 

  26. Prantzos, N. A probabilistic analysis of the Fermi paradox in terms of the Drake formula: the role of the L factor. Mon. Not. R. Astron. Soc. 493, 3464–3472 (2020).

    Article  ADS  Google Scholar 

  27. Wandel, A. The Fermi paradox revisited: technosignatures and the contact era. Astrophys. J. 941, 184 (2022).

    Article  ADS  Google Scholar 

  28. Ball, J. A. The zoo hypothesis. Icarus 19, 347–349 (1973).

    Article  ADS  Google Scholar 

  29. Stapledon, O. Star Maker (1937), reprinted in SF Masterworks No. 21 (Orion, 1999).

  30. Forgan, D. H. Spatio-temporal constraints on the zoo hypothesis, and the breakdown of total hegemony. Int. J. Astrobiol. 10, 341–347 (2011).

    Article  ADS  Google Scholar 

  31. Crawford, I. A. Some thoughts on the implications of faster-than-light interstellar space travel. Q. J. R. Astron. Soc. 36, 205–218 (1995).

    ADS  Google Scholar 

  32. Lineweaver, C. H. An estimate of the age distribution of terrestrial planets in the universe: quantifying metallicity as a selection effect. Icarus 151, 307–313 (2001).

    Article  ADS  Google Scholar 

  33. Zackrisson, E. et al. Terrestrial planets across space and time. Astrophys. J. 833, 214 (2016).

    Article  ADS  Google Scholar 

  34. Vukotić, B. et al. ‘Grandeur in this view of life’: N-body simulation models of the Galactic habitable zone. Mon. Not. R. Astron. Soc. 459, 3512–3524 (2016).

    Article  ADS  Google Scholar 

  35. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1997).

  36. McKay, C. P. in Circumstellar Habitable Zones (ed. Doyle, L. R.) 405–419 (Travis House, 1996).

  37. Baxter, S. in Expanding Worldviews: Astrobiology, Big History and Cosmic Perspectives (ed. Crawford, I. A.) 91–106 (Springer, 2021).

  38. 2022 Annual Report on Unidentified Aerial Phenomena (Office of the Director of National Intelligence, USA, 2022).

  39. Hanson, R. The Great Filter—Are We Almost Past It? https://archive.ph/dN4aQ#selection-11.0-19.12 (1998).

  40. Ginsburg, I., Lingam, M. & Loeb, A. Galactic panspermia. Astrophys. J. Lett. 868, L12 (2018).

    Article  ADS  Google Scholar 

  41. Kipping, D. An objective Bayesian analysis of life’s early start and our late arrival. Proc. Natl Acad. Sci. USA 117, 11995–12003 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  42. Balbi, A. & Lingam, M. Beyond mediocrity: how common is life? Mon. Not. R. Astron. Soc. 522, 3117–3123 (2023).

    Article  ADS  Google Scholar 

  43. Kiang, N. Y. et al. Exoplanet biosignatures: at the dawn of a new era of planetary observations. Astrobiol 18, 619–629 (2018).

    Article  ADS  Google Scholar 

  44. Schulze-Makuch, D. & Bains, W. Time to consider search strategies for complex life on exoplanets. Nat. Astron. 2, 432–433 (2018).

    Article  ADS  Google Scholar 

  45. Baross, J. A. et al. The Limits of Organic Life in Planetary Systems (National Academies Press, 2007).

  46. Chopra, A. & Lineweaver, C. H. The case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).

    Article  ADS  Google Scholar 

  47. Balbi, A. & Frank, A. The oxygen bottleneck for technospheres. Preprint at https://doi.org/10.48550/arXiv.2308.01160 (2023).

  48. Carter, B. The anthropic principle and its implications for biological evolution. Philos. Trans. R. Soc. A310, 347–363 (1983).

    ADS  Google Scholar 

  49. De Duve, C. Singularities: Landmarks on the Pathways of Life (Cambridge Univ. Press, 2005).

  50. Wallace, A. R. Man’s Place in the Universe (Chapman & Hall, 1904).

  51. Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).

    Article  Google Scholar 

  52. Knoll, A. H. Multicellularity. Ann. Rev. Earth Planet. Sci. 39, 217–239 (2011).

    Article  ADS  Google Scholar 

  53. Schulze-Makuch, D. & Bains, W. The Cosmic Zoo: Complex Life on Many Worlds (Springer, 2017).

  54. Lingam, M., Balbi, A. & Mahajan, S.M. A Bayesian analysis of technological intelligence in land and oceans. Astrophys. J. 945, 23 (2023).

    Article  ADS  Google Scholar 

  55. Dennett., D. Darwin’s Dangerous Idea: Evolution and the Meanings of Life (Penguin, 1995).

  56. Sandberg, A., Drexler, E. & Ord, T. Dissolving the Fermi paradox. Preprint at https://doi.org/10.48550/arXiv.1806.02404 (2018).

  57. Snyder-Beattie, A. E., Sandberg, A., Drexler, E.K. & Bonsall, M.B. The timing of evolutionary transitions suggests intelligent life is rare. Astrobiology 21, 265–278 (2021).

    Article  ADS  Google Scholar 

  58. Haqq-Misra, J. et al. Opportunities for technosignature science in the Planetary Science and Astrobiology Decadal Survey. Preprint at https://doi.org/10.48550/arXiv.2209.11685 (2022).

  59. Tipler, F. J. Extraterrestrial intelligent beings do not exist. Q. J. R. Astron. Soc. 21, 267–281 (1980).

    ADS  Google Scholar 

  60. Baxter, S. The planetarium hypothesis: a resolution of the Fermi paradox. J. Br. Interplanet. Soc. 54, 210–216 (2001).

    ADS  Google Scholar 

  61. Arkhipov, A. V. Earth–Moon system as a collector of alien artefacts. J. Br. Interplanet. Soc. 51, 181–184 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Crawford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Niklas Alexander Döbler, Manasvi Lingam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, I.A., Schulze-Makuch, D. Is the apparent absence of extraterrestrial technological civilizations down to the zoo hypothesis or nothing?. Nat Astron 8, 44–49 (2024). https://doi.org/10.1038/s41550-023-02134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02134-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing