Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

c-Myc-induced long noncoding RNA MIRE cooperates with hnRNPK to stabilize ELF2 mRNA and promotes clear cell renal cell carcinogenesis

Abstract

Elevated expression of c-Myc is associated with a variety of human cancers including clear cell renal cell carcinoma (ccRCC). Increasing evidence suggests that long noncoding RNAs (lncRNAs) are an important class of molecules that regulate both tumor initiation and progression. Here, we report the lncRNA c-Myc-induced regulator of ELF2 (MIRE) as a transcriptional target of c-Myc. MIRE functions as an oncogenic molecule in ccRCC by increasing ELF2 expression. Mechanistically, MIRE promotes phase separation of the RNA binding protein hnRNPK and facilitates the binding of hnRNPK to ELF2 mRNA, thereby resulting in the stabilization of ELF2 mRNA. Interestingly, MIRE is also under transcriptional control by ELF2, establishing an ELF2-MIRE positive feedback loop. Together, these findings provide new insights into the mechanisms by which c-Myc promotes tumorigenesis. They also implicate MIRE as an important regulator of ccRCC carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MIRE functions as an oncogenic lncRNA in clear cell renal cell carcinoma (ccRCC).
Fig. 2: MIRE is transcriptionally up-regulated by c-Myc.
Fig. 3: MIRE increases ELF2 expression.
Fig. 4: MIRE exerts its oncogenic role by increasing ELF2 expression.
Fig. 5: MIRE cooperates with hnRNPK to enhance ELF2 mRNA stability.
Fig. 6: MIRE promotes the formation of hnRNPK phase-separated condensates.
Fig. 7: MIRE accelerates tumor cell growth via hnRNPK.

Similar content being viewed by others

Data availability

The RNA sequencing data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus with accession code GSE218179.

References

  1. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4:a014241.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5:1024–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8:976–90.

    Article  CAS  PubMed  Google Scholar 

  4. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang SW, Chang WH, Su YC, Chen YC, Lai YH, Wu PT, et al. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett. 2009;273:35–43.

    Article  CAS  PubMed  Google Scholar 

  6. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–16.

    Article  CAS  PubMed  Google Scholar 

  7. McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med. 2014;4:a014266.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 2014;4:a014357.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carroll PA, Freie BW, Mathsyaraja H, Eisenman RN. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med. 2018;12:412–25.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  15. Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding RNAs. Annu Rev Genet. 2014;48:433–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  17. Salviano-Silva A, Lobo-Alves SC, Almeida RC, Malheiros D, Petzl-Erler ML. Besides pathology: long non-coding rna in cell and tissue homeostasis. Noncoding RNA. 2018;4:3.

    PubMed  PubMed Central  Google Scholar 

  18. Nandwani A, Rathore S, Datta M. LncRNAs in cancer: regulatory and therapeutic implications. Cancer Lett. 2021;501:162–71.

    Article  CAS  PubMed  Google Scholar 

  19. Feng YC, Liu XY, Teng L, Ji Q, Wu Y, Li JM, et al. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat Commun. 2020;11:4980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hung CL, Wang LY, Yu YL, Chen HW, Srivastava S, Petrovics G, et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA. 2014;111:18697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim T, Cui R, Jeon YJ, Lee JH, Lee JH, Sim H, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA. 2014;111:4173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sang B, Zhang YY, Guo ST, Kong LF, Cheng Q, Liu GZ, et al. Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. Proc Natl Acad Sci USA. 2018;115:E11661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014;512:82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang C, Yang Y, Zhang G, Li J, Wu X, Ma X, et al. Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proc Natl Acad Sci USA. 2019;116:14620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao ZD, Han L, Lee H, Zhuang L, Zhang Y, Baddour J, et al. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 2017;8:783.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilkinson DA, Neale GA, Mao S, Naeve CW, Goorha RM. Elf-2, a rhombotin-2 binding ets transcription factor: discovery and potential role in T cell leukemia. Leukemia. 1997;11:86–96.

    Article  CAS  PubMed  Google Scholar 

  27. Chung IH, Liu H, Lin YH, Chi HC, Huang YH, Yang CC, et al. ChIP-on-chip analysis of thyroid hormone-regulated genes and their physiological significance. Oncotarget. 2016;7:22448–59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Tao Z, Qu J, Zhou X, Zhang C. Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2017;491:374–81.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Hou W, Jia J, Zhao Y, Zhao B. MiR-409-3p regulates cell proliferation and tumor growth by targeting E74-like factor 2 in osteosarcoma. FEBS Open Bio. 2017;7:348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ando M, Kawazu M, Ueno T, Koinuma D, Ando K, Koya J, et al. Mutational landscape and antiproliferative functions of ELF transcription factors in human cancer. Cancer Res. 2016;76:1814–24.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao K, Wang D, Zhao X, Wang C, Gao Y, Liu K, et al. WDR63 inhibits Arp2/3-dependent actin polymerization and mediates the function of p53 in suppressing metastasis. EMBO Rep. 2020;21:e49269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, et al. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021;7:eabe5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181:325–345 e328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, et al. c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA. Cell Death Dis. 2021;12:1006.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–115.

    Article  CAS  PubMed  Google Scholar 

  36. Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. Precis Future Med. 2018;2:158–66.

    Article  CAS  Google Scholar 

  37. Wiedner HJ, Giudice J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol. 2021;28:465–73.

    Article  CAS  PubMed  Google Scholar 

  38. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci USA. 2015;112:6539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hart JR, Roberts TC, Weinberg MS, Morris KV, Vogt PK. MYC regulates the non-coding transcriptome. Oncotarget. 2014;5:12543–54.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kawasaki Y, Komiya M, Matsumura K, Negishi L, Suda S, Okuno M, et al. MYU, a target lncRNA for Wnt/c-Myc signaling, mediates induction of CDK6 to promote cell cycle progression. Cell Rep. 2016;16:2554–64.

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Hu Z, Mangala LS, Stine ZE, Hu X, Jiang D, et al. MYC targeted long noncoding RNA DANCR promotes cancer in part by reducing p21 levels. Cancer Res. 2018;78:64–74.

    Article  CAS  PubMed  Google Scholar 

  43. Winkle M, van den Berg A, Tayari M, Sietzema J, Terpstra M, Kortman G, et al. Long noncoding RNAs as a novel component of the Myc transcriptional network. FASEB J. 2015;29:2338–46.

    Article  CAS  PubMed  Google Scholar 

  44. Xiang S, Gu H, Jin L, Thorne RF, Zhang XD, Wu M. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1alpha via IDH1 to regulate the Warburg effect. Proc Natl Acad Sci USA. 2018;115:E1465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    Article  CAS  PubMed  Google Scholar 

  46. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathy NW, Deng S, Gong AY, Li M, Wang Y, Burleigh O, et al. The long non-coding RNA nostrill regulates transcription of Irf7 through interaction with NF-kappaB p65 to enhance intestinal epithelial defense against cryptosporidium parvum. Front Immunol. 2022;13:863957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18:206.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43:621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carpenter B, McKay M, Dundas SR, Lawrie LC, Telfer C, Murray GI. Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer. Br J Cancer. 2006;95:921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen LC, Chung IC, Hsueh C, Tsang NM, Chi LM, Liang Y, et al. The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients. Cell Death Differ. 2010;17:1463–73.

    Article  CAS  PubMed  Google Scholar 

  52. Ciarlo M, Benelli R, Barbieri O, Minghelli S, Barboro P, Balbi C, et al. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int J Cancer. 2012;131:582–90.

    Article  CAS  PubMed  Google Scholar 

  53. Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM. Aberrant hnRNP K expression: all roads lead to cancer. Cell Cycle. 2016;15:1552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dayyani F, Wang J, Yeh JR, Ahn EY, Tobey E, Zhang DE, et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood. 2008;111:4338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122:100–8.

    Article  PubMed  Google Scholar 

  56. Sweetser DA, Peniket AJ, Haaland C, Blomberg AA, Zhang Y, Zaidi ST, et al. Delineation of the minimal commonly deleted segment and identification of candidate tumor-suppressor genes in del(9q) acute myeloid leukemia. Genes Chromosomes Cancer. 2005;44:279–91.

    Article  CAS  PubMed  Google Scholar 

  57. Parker DM, Winkenbach LP, Osborne Nishimura E. It’s just a phase: exploring the relationship between mRNA, biomolecular condensates, and translational control. Front Genet. 2022;13:931220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022;22:239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22:183–95.

    Article  CAS  PubMed  Google Scholar 

  60. Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, et al. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res. 2018;46:917–28.

    Article  CAS  PubMed  Google Scholar 

  61. Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD, Severijnen L, et al. An integrative study of protein-RNA condensates identifies scaffolding RNAs and reveals players in fragile X-associated tremor/ataxia syndrome. Cell Rep. 2018;25:3422–3434 e3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, et al. New Insights into the Interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells. 2019;8:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolf E, Eilers M. Targeting MYC proteins for tumor therapy. Annu Rev Canc Biol. 2020;4:61–75.

    Article  Google Scholar 

  64. Llombart V, Mansour MR. Therapeutic targeting of “undruggable” MYC. EBioMedicine. 2022;75:103756.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (2019YFA0802600), the National Natural Science Foundation of China (91957108, 31871440, and 32270811), and the Fundamental Research Funds For Central Universities (YD9100002012 and WK9100000024).

Author information

Authors and Affiliations

Authors

Contributions

BL, XW, FW, and YM designed research. BL, BY, XG, and ZW performed research. BL, BY, XG, ZW, WX, XW, FW, and YM analyzed data. BL, FW, and YM wrote the paper.

Corresponding authors

Correspondence to Xianning Wu, Fang Wang or Yide Mei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yao, B., Guo, X. et al. c-Myc-induced long noncoding RNA MIRE cooperates with hnRNPK to stabilize ELF2 mRNA and promotes clear cell renal cell carcinogenesis. Cancer Gene Ther 30, 1215–1226 (2023). https://doi.org/10.1038/s41417-023-00631-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00631-0

Search

Quick links