Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model

Abstract

The prognosis of glioblastoma remains poor despite intensive research efforts. Glioblastoma stem cells (GSCs) contribute to tumorigenesis, invasive capacity, and therapy resistance. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a stem cell marker, is involved in the maintenance of GSCs, although the properties of Lgr5-positive GSCs remain unclear. Here, the Sleeping-Beauty transposon-induced glioblastoma model was used in Lgr5-GFP knock-in mice identify GFP-positive cells in neurosphere cultures from mouse glioblastoma tissues. Global gene expression analysis showed that Gli2 was highly expressed in GFP-positive GSCs. Gli2 knockdown using lentiviral-mediated shRNA downregulated Hedgehog-related and Wnt signaling pathway-related genes, including Lgr5; suppressed tumor cell proliferation and invasion capacity; and induced apoptosis. Pharmacological Gli inhibition with GANT61 suppressed tumor cell proliferation. Silencing Gli2 suppressed the tumorigenicity of GSCs in an orthotopic transplantation model in vivo. These findings suggest that Gli2 affects the Hedgehog and Wnt pathways and plays an important role in GSC maintenance, suggesting Gli2 as a therapeutic target for glioblastoma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lgr5-GFP-positive glioblastoma stem cells exhibit higher tumorigenicity.
Fig. 2: Activation of the Hh signaling pathway affects Lgr5 expression.
Fig. 3: Gli2 knockdown affects the Hh and Wnt pathways.
Fig. 4: Gli2 knockdown suppresses the growth of GSCs.
Fig. 5: GANT61 suppresses proliferation and induces apoptosis.
Fig. 6: Gli2 knockdown suppresses tumorigenicity in vivo.

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147:297–307.

    Article  PubMed  Google Scholar 

  3. Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol. 2008;26:5603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol. 2015;17:1261–9.

    Article  CAS  PubMed  Google Scholar 

  5. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl J Med. 2014;370:709–22.

    Article  CAS  PubMed  Google Scholar 

  6. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl J Med. 2014;370:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6:425–36.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, et al. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 2018;37:225.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  10. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  11. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  12. Leung C, Tan SH, Barker N. Recent Advances in Lgr5+ Stem Cell Research. Trends Cell Biol. 2018;28:380–91.

    Article  CAS  PubMed  Google Scholar 

  13. Nakata S, Phillips E, Goidts V. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells. Cancer Manag Res. 2014;6:171–80.

    PubMed  PubMed Central  Google Scholar 

  14. Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther. 2019;10:219.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakata S, Campos B, Bageritz J, Bermejo JL, Becker N, Engel F, et al. LGR5 is a marker of poor prognosis in glioblastoma and is required for survival of brain cancer stem-like cells. Brain Pathol. 2013;23:60–72.

    Article  CAS  PubMed  Google Scholar 

  16. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18:8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol. 2017;24:252–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–54.

    Article  CAS  PubMed  Google Scholar 

  19. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA. 2007;104:4048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song L, Chen X, Wang P, Gao S, Qu C, Liu L. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway. Acta Biochim Biophys Sin. 2018;50:586–96.

    Article  CAS  PubMed  Google Scholar 

  23. Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, et al. GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem. 2018;119:3641–52.

    Article  CAS  PubMed  Google Scholar 

  24. Alexaki VI, Javelaud D, Van Kempen LC, Mohammad KS, Dennler S, Luciani F, et al. GLI2-mediated melanoma invasion and metastasis. J Natl Cancer Inst. 2010;102:1148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, et al. Role of GLI2 in the growth of human osteosarcoma. J Pathol. 2011;224:169–79.

    Article  CAS  PubMed  Google Scholar 

  26. Yu B, Gu D, Zhang X, Liu B, Xie J. The role of GLI2-ABCG2 signaling axis for 5Fu resistance in gastric cancer. J Genet Genomics. 2017;44:375–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cai Z, Wu Y, Li Y, Ren J, Wang L. BCAR4 activates GLI2 signaling in prostate cancer to contribute to castration resistance. Aging. 2018;10:3702–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan J, Zhang X, Wang S, Chen W, Li Y, Zeng X, et al. Regulating autophagy facilitated therapeutic efficacy of the sonic Hedgehog pathway inhibition on lung adenocarcinoma through GLI2 suppression and ROS production. Cell Death Dis. 2019;10:626.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raven PA, Lysakowski S, Tan Z, D’Costa NM, Moskalev I, Frees S, et al. Inhibition of GLI2 with antisense-oligonucleotides: a potential therapy for the treatment of bladder cancer. J Cell Physiol. 2019;234:20634–47.

    Article  CAS  PubMed  Google Scholar 

  30. Huang D, Wang Y, Xu L, Chen L, Cheng M, Shi W, et al. GLI2 promotes cell proliferation and migration through transcriptional activation of ARHGEF16 in human glioma cells. J Exp Clin Cancer Res. 2018;37:247.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang JX, Zhou JF, Huang FK, Zhang L, He QL, Qian HY, et al. GLI2 induces PDGFRB expression and modulates cancer stem cell properties of gastric cancer. Eur Rev Med Pharm Sci. 2017;21:3857–65.

    Google Scholar 

  32. Chandra V, Das T, Gulati P, Biswas NK, Rote S, Chatterjee U, et al. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters. PLoS ONE. 2015;10:e0116390.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. EDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.

    Article  CAS  PubMed  Google Scholar 

  34. Nanta R, Shrivastava A, Sharma J, Shankar S, Srivastava RK. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem. 2019;454:11–23.

    Article  CAS  PubMed  Google Scholar 

  35. Maiti S, Mondal S, Satyavarapu EM, Mandal C. mTORC2 regulates hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation. Cell Death Dis. 2017;8:e2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiesner SM, Decker SA, Larson JD, Ericson K, Forster C, Gallardo JL, et al. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res. 2009;69:431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther. 2005;12:778–88.

    Article  CAS  PubMed  Google Scholar 

  38. Fujita M, Scheurer ME, Decker SA, McDonald HA, Kohanbash G, Kastenhuber ER, et al. Role of type 1 IFNs in antiglioma immunosurveillance-using mouse studies to guide examination of novel prognostic markers in humans. Clin Cancer Res. 2010;16:3409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 2012;40:D1301–D1307.

    Article  CAS  PubMed  Google Scholar 

  40. Wang D, Zhou J, Fan C, Jiao F, Liu B, Sun P, et al. Knockdown of LGR5 suppresses the proliferation of glioma cells in vitro and in vivo. Oncol Rep. 2014;31:41–49.

    Article  PubMed  Google Scholar 

  41. Tanese K, Fukuma M, Yamada T, Mori T, Yoshikawa T, Watanabe W, et al. G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation. Am J Pathol. 2008;173:835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Liu H, Yan Z, Sun Z, Luo S, Lu Q. Inhibition of the Hedgehog signaling pathway suppresses cell proliferation by regulating the Gli2/miR-124/AURKA axis in human glioma cells. Int J Oncol. 2017;50:1868–78.

    Article  CAS  PubMed  Google Scholar 

  45. Xie Y, Sundström A, Maturi NP, Tan EJ, Marinescu VD, Jarvius M, et al. LGR5 promotes tumorigenicity and invasion of glioblastoma stem-like cells and is a potential therapeutic target for a subset of glioblastoma patients. J Pathol. 2019;247:228–40.

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Cai J, Zhao S, Yao K, Sun Y, Li Y, et al. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J Exp Clin Cancer Res. 2016;35:184.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, et al. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 2013;330:22–32.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J, Zhu G, Huang J, Li L, Du Y, Gao Y, et al. Non-canonical GLI1/2 activation by PI3K/AKT signaling in renal cell carcinoma: A novel potential therapeutic target. Cancer Lett. 2016;370:313–23.

    Article  CAS  PubMed  Google Scholar 

  49. Benvenuto M, Masuelli L, De Smaele E, Fantini M, Mattera R, Cucchi D, et al. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 2016;7:9250–70.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang Y, Chen H, Duan J, Wu W, Le F, Mou F. The inhibitory effect and safety of GANT61 on HeLa cells in nude mice. Exp Mol Pathol. 2020;113:104352.

    Article  CAS  PubMed  Google Scholar 

  51. Pantazi E, Gemenetzidis E, Teh MT, Reddy SV, Warnes G, Evagora C, et al. GLI2 is a regulator of β-catenin and is associated with loss of E-cadherin, cell invasiveness, and long-term epidermal regeneration. J Invest Dermatol. 2017;137:1719–30.

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Yu P, Wang S, Jiang L, Chen F, Chen W. Crosstalk between Hh and Wnt signaling promotes osteosarcoma progression. Int J Clin Exp Pathol. 2019;12:768–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharm Ther. 2015;152:63–82.

    Article  CAS  Google Scholar 

  54. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Satomi Toma, Hitoshi Iwasaki, Shinsaku Nakamura, Koichi Uesaka, and Noriko Saito for experimental support.

Funding

This work was supported by the Japan Society for the Promotion of Science, grant numbers 20K07623 and 16K08722; the Ministry of Education, Culture, Sports, Science and Technology–Supported Program for the Strategic Research Foundation at Private Universities 2015–2019; and the Kyoto Pharmaceutical University Fund for the Promotion of Collaborative Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Nakata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanigawa, S., Fujita, M., Moyama, C. et al. Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther 28, 1339–1352 (2021). https://doi.org/10.1038/s41417-020-00282-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00282-5

This article is cited by

Search

Quick links