Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting SIK3 to modulate hippocampal synaptic plasticity and cognitive function by regulating the transcription of HDAC4 in a mouse model of Alzheimer’s disease

Abstract

Cognitive deterioration and memory decline associated with the progression of Alzheimer’s disease (AD) primarily results from synaptic failure. However, current understanding of the upstream regulatory mechanisms controlling synaptic plasticity remains limited. Salt-inducible kinase 3 (SIK3) is central to the signal pathway and is involved in neuronal regulation of sleep duration in mice. We speculated that the SIK3 cascade signaling pathway might contribute to the pathogenesis of AD. Thus, the present study employed AD transgenic mouse models, Morris Water Maze, virus-mediated gene transfer, electrophysiology, co-immunoprecipitation, western blotting, quantitative polymerase chain reaction, immunofluorescence, ChIP-qPCR, Golgi-Cox staining and dendritic spine analysis to investigate this connection. Our results revealed that SIK3 mRNA/protein expression was significantly reduced in middle-aged AD transgenic mouse models and AD patients. Conditional deletion of SIK3 gene in dorsal hippocampal neurons of 5×FAD mice further accelerated cognitive deterioration and impaired synaptic plasticity. In hippocampal neuronal cultures, SIK3 formed a complex with HDAC4, directly phosphorylated HDAC4 and regulated its nuclear cytoplasmic shuttle. Overexpression of SIK3 could facilitate the expression of synaptic plasticity-related genes by directly repressing mef2c or involving the recruitment of histone deacetylase to promoter regions of target genes through regulation of p-HDAC4, and vice versa. Moreover, up-regulation of SLP-S, the truncated fragment of SIK3, in dorsal hippocampal neurons, restored the synaptic plasticity and alleviates the cognitive impairment in 5×FAD mice. Collectively, these findings revealed a novel and important role of SIK3-HDAC4 regulation of synaptic plasticity and propose a new target for therapeutic approaches of cognitive deficits associated with AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIK3 expression decreases in the middle-aged AD transgenic mouse models and AD patients.
Fig. 2: Conditional deletion of SIK3 in dorsal hippocampus impairs cognitive function and synaptic plasticity in 5×FAD mice.
Fig. 3: SIK3 forms a complex with HDAC4 to regulate its nucleocytoplasmic shuttling.
Fig. 4: HDAC4 regulates the transcription of genes related to synaptic plasticity through mef2c and histone acetylation.
Fig. 5: The SLP-S upregulation restores the synaptic plasticity and alleviates the cognitive impairment in 5×FAD mice.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in this article and its Supplementary information files. Further inquiries can be directed to the corresponding author.

References

  1. John A, Reddy PH. Synaptic basis of Alzheimer’s disease: focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev. 2021;65:101208.

    CAS  PubMed  Google Scholar 

  2. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27:1372–84.

    CAS  PubMed  Google Scholar 

  3. Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci. 2018;21:463–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci. 2017;40:347–57.

    CAS  PubMed  Google Scholar 

  5. Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging. 1990;11:29–37.

    CAS  PubMed  Google Scholar 

  6. Campbell RR, Wood MA. How the epigenome integrates information and reshapes the synapse. Nat Rev Neurosci. 2019;20:133–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim S, Kaang BK. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med. 2017;49:e281.

    PubMed  PubMed Central  Google Scholar 

  8. Wang J, Hodes GE, Zhang H, Zhang S, Zhao W, Golden SA, et al. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun. 2018;9:477.

    PubMed  PubMed Central  Google Scholar 

  9. Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain. 2017;140:3252–68.

    PubMed  PubMed Central  Google Scholar 

  10. Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci. 2016;19:102–10.

    CAS  PubMed  Google Scholar 

  11. Kennedy AJ, Rahn EJ, Paulukaitis BS, Savell KE, Kordasiewicz HB, Wang J, et al. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function. Cell Rep. 2016;16:2666–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peixoto L, Abel T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology. 2013;38:62–76.

    CAS  PubMed  Google Scholar 

  13. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Penney J, Tsai LH. Histone deacetylases in memory and cognition. Sci Signal. 2014;7:re12.

    PubMed  Google Scholar 

  15. Li X, Zhang J, Li D, He C, He K, Xue T, et al. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron. 2021;109:957–70.e958.

    CAS  PubMed  Google Scholar 

  16. Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J 3rd, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wheeler PG, Huang D, Dai Z. Haploinsufficiency of HDAC4 does not cause intellectual disability in all affected individuals. Am J Med Genet A. 2014;164a:1826–9.

    PubMed  Google Scholar 

  18. Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G, McLeod DR, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med. 2013;5:52–63.

    CAS  PubMed  Google Scholar 

  20. Wagner FF, Zhang YL, Fass DM, Joseph N, Gale JP, Weïwer M, et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem Sci. 2015;6:804–15.

    CAS  PubMed  Google Scholar 

  21. Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis. 2009;18:131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Liu Q. Age- and disease-related memory decline: epigenetic biomarker and treatment. Sci Bull (Beijing). 2023;68:1719–21.

    PubMed  Google Scholar 

  23. Nishimori S, Wein MN, Kronenberg HM. PTHrP targets salt-inducible kinases, HDAC4 and HDAC5, to repress chondrocyte hypertrophy in the growth plate. Bone. 2021;142:115709.

    CAS  PubMed  Google Scholar 

  24. Shi F, de Fatima Silva F, Liu D, Patel HU, Xu J, Zhang W, et al. Salt-inducible kinase inhibition promotes the adipocyte thermogenic program and adipose tissue browning. Mol Metab. 2023;74:101753.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, et al. A hormone-dependent module regulating energy balance. Cell. 2011;145:596–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou R, Wang G, Li Q, Meng F, Liu C, Gan R, et al. A signalling pathway for transcriptional regulation of sleep amount in mice. Nature. 2022;612:519–27.

    CAS  PubMed  Google Scholar 

  27. Kim SJ, Hotta-Hirashima N, Asano F, Kitazono T, Iwasaki K, Nakata S, et al. Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature. 2022;612:512–8.

    CAS  PubMed  Google Scholar 

  28. Asano F, Kim SJ, Fujiyama T, Miyoshi C, Hotta-Hirashima N, Asama N, et al. SIK3-HDAC4 in the suprachiasmatic nucleus regulates the timing of arousal at the dark onset and circadian period in mice. Proc Natl Acad Sci USA. 2023;120:e2218209120.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Herring BE, Nicoll RA. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol. 2016;78:351–65.

    CAS  PubMed  Google Scholar 

  30. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci. 2007;8:101–13.

    CAS  PubMed  Google Scholar 

  31. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353:1536–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA. 2007;104:17335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Zhou R, Wang G, Guo Y, Gao X, Zhou S, et al. Regulation of sleep quantity and intensity by long and short isoforms of SLEEPY kinase. Sleep. 2022;45:zsac198.

  34. Ponnusamy L, Kothandan G, Manoharan R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165897.

    CAS  PubMed  Google Scholar 

  35. Yan P, Wang Y, Meng X, Yang H, Liu Z, Qian J, et al. Whole exome sequencing of ulcerative colitis-associated colorectal cancer based on novel somatic mutations identified in Chinese patients. Inflamm Bowel Dis. 2019;25:1293–301.

    PubMed  Google Scholar 

  36. Lee M, Sorn SR, Lee Y, Kang I. Salt induces adipogenesis/lipogenesis and inflammatory adipocytokines secretion in adipocytes. Int J Mol Sci. 2019;20:160.

  37. Dai XM, Zhang YH, Lin XH, Huang XX, Zhang Y, Xue CR, et al. SIK2 represses AKT/GSK3β/β-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases. Mol Oncol. 2021;15:228–45.

    CAS  PubMed  Google Scholar 

  38. Tarumoto Y, Lin S, Wang J, Milazzo JP, Xu Y, Lu B, et al. Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood. 2020;135:56–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sasagawa S, Takemori H, Uebi T, Ikegami D, Hiramatsu K, Ikegawa S, et al. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development. 2012;139:1153–63.

    CAS  PubMed  Google Scholar 

  40. O’ Neill C. PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol. 2013;48:647–53.

    PubMed  Google Scholar 

  41. Waltereit R, Weller M. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol. 2003;27:99–106.

    CAS  PubMed  Google Scholar 

  42. Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem. 2022;187:107558.

    CAS  PubMed  Google Scholar 

  43. Perry S, Kiragasi B, Dickman D, Ray A. The role of histone deacetylase 6 in synaptic plasticity and memory. Cell Rep. 2017;18:1337–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Blanchard FJ, Collins B, Cyran SA, Hancock DH, Taylor MV, Blau J. The transcription factor Mef2 is required for normal circadian behavior in Drosophila. J Neurosci. 2010;30:5855–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sivachenko A, Li Y, Abruzzi KC, Rosbash M. The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron. 2013;79:281–92.

    CAS  PubMed  Google Scholar 

  46. Chen Z, Zhang Z, Guo L, Wei X, Zhang Y, Wang X, et al. The role of histone deacetylase 4 during chondrocyte hypertrophy and endochondral bone development. Bone Joint Res. 2020;9:82–89.

    PubMed  PubMed Central  Google Scholar 

  47. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR, et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol. 2013;9:319–25.

    CAS  PubMed  Google Scholar 

  49. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281:16502–11.

    CAS  PubMed  Google Scholar 

  50. Verheijen J, Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018;34:434–47.

    CAS  PubMed  Google Scholar 

  51. Barker SJ, Raju RM, Milman NEP, Wang J, Davila-Velderrain J, Gunter-Rahman F, et al. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci Transl Med. 2021;13:eabd7695.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon. 2021;7:e06854.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma Q, Telese F. Genome-wide epigenetic analysis of MEF2A and MEF2C transcription factors in mouse cortical neurons. Commun Integr Biol. 2015;8:e1087624.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Qinghua Liu from National Institute of Biological Sciences, Beijing, China for providing the SLP-S plasmid. We thank Guanghao Liu from Department of Bioinformatics, Fujian Medical University for bioinformation analysis.

Funding

This work was supported by grants to Xiaoman Dai from the National Natural Science Foundation of China (No.82101481), the Excellent Young Scholars Cultivation Project of Fujian Medical University Union Hospital (No.2022XH032), the Health and Family Planning Commission of Fujian Province (No.2021GGA012), the Science and Technology Program of Fujian Province (No. 2022J01250). This work was also supported by grants to Xiaochun Chen from the National Natural Science Foundation of China (No. U21A20362).

Author information

Authors and Affiliations

Authors

Contributions

XD performed the experiments and wrote the manuscript; AL performed electrophysiological recording of brain slices and data analysis; LZ designed and validated viruses. QZ performed the breeding of mice; LC, YW, HL, and WG completed virus injection, animal behavior and behavioral analysis; JZ and XC conceived and designed the project, and prepared and revised the manuscript; all authors read and commented on the manuscript.

Corresponding authors

Correspondence to Jing Zhang or Xiaochun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Lin, A., Zhuang, L. et al. Targeting SIK3 to modulate hippocampal synaptic plasticity and cognitive function by regulating the transcription of HDAC4 in a mouse model of Alzheimer’s disease. Neuropsychopharmacol. 49, 942–952 (2024). https://doi.org/10.1038/s41386-023-01775-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01775-1

Search

Quick links