Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning

Abstract

Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: p53 protein expression is induced by cLTP.
Fig. 2: Knocking down p53 impairs cLTP-induced surface expression of AMPAR and strengthening of synapses.
Fig. 3: Knocking down p53 does not alter locomotor activity or anxiety-like behavior in mice.
Fig. 4: Knocking down p53 increases repetitive behavior and reduces sociability in mice.
Fig. 5: Knocking down p53 impairs hippocampus-dependent learning and memory particularly in male mice.
Fig. 6: RNAseq reveals p53-associated genes potentially involved in synaptic plasticity, learning and memory.

Similar content being viewed by others

Data availability

The RNA sequencing results can be found at https://doi.org/10.6084/m9.figshare.23560812.v1.

References

  1. Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron. 2008;60:610–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai NP, Wilkerson JR, Guo W, Maksimova MA, DeMartino GN, Cowan CW, et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012;151:1581–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schütz G, Linden DJ, et al. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci. 2005;8:759–67.

    CAS  PubMed  Google Scholar 

  4. Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci. 2021;22:657–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Camins A, Verdaguer E, Folch J, Beas-Zarate C, Canudas AM, Pallas M.Inhibition of ataxia telangiectasia-p53-E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis.Curr Drug Metab. 2007;8:709–15.

    CAS  PubMed  Google Scholar 

  7. Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, et al. Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res. 2012;22:195–207.

    PubMed  Google Scholar 

  8. Simon DJ, Belsky DM, Bowen ME, Ohn CYJ, O’Rourke MK, Shen R, et al. An anterograde pathway for sensory axon degeneration gated by a cytoplasmic action of the transcriptional regulator P53. Dev Cell. 2021;56:976–84.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S, et al. Requirement of neuronal ribosome synthesis for growth and maintenance of the dendritic tree. J Biol Chem. 2016;291:5721–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu DC, Lee KY, Lizarazo S, Cook JK, Tsai NP. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Neurobiol Dis. 2021;158:105450.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu DC, Soriano S, Yook Y, Lizarazo S, Eagleman DE, Tsai NP. Chronic activation of Gp1 mGluRs leads to distinct refinement of neural network activity through non-canonical p53 and Akt signaling. eNeuro. 2020;7:ENEURO.0438-19.

  12. Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of Fragile X Protein FMRP impairs homeostatic synaptic downscaling through tumor Suppressor p53 and Ubiquitin E3 Ligase Nedd4-2. Hum Mol Genet. 2018;27:2805–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis. 2009;14:478–500.

    PubMed  PubMed Central  Google Scholar 

  14. Miller FD, Pozniak CD, Walsh GS. Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 2000;7:880–8.

    CAS  PubMed  Google Scholar 

  15. Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA, et al. Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci. 2010;30:11565–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hussain NK, Diering GH, Sole J, Anggono V, Huganir RL. Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc Natl Acad Sci USA. 2014;111:11840–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA. Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull. 2007;72:32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kastenberger I, Lutsch C, Herzog H, Schwarzer C. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice. PLoS One. 2012;7:e34251.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puschban Z, Sah A, Grutsch I, Singewald N, Dechant G. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR(exon IV-/-) mice. Front Behav Neurosci. 2016;10:103.

    PubMed  PubMed Central  Google Scholar 

  20. Wang H, Aragam B, Xing EP. Trade-offs of linear mixed models in genome-Wide Association Studies. J Comput Biol. 2022;29:233–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–84.e23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee KY, Zhu J, Cutia CA, Christian-Hinman CA, Rhodes JS, Tsai NP. Infantile spasms-linked Nedd4-2 mediates hippocampal plasticity and learning via cofilin signaling. EMBO Rep. 2021;22:e52645.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005;19:2122–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Loughery J, Cox M, Smith LM, Meek DW. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 2014;42:7666–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Turenne GA, Price BD. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell Biol. 2001;2:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron. 2003;40:595–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA. 2002;99:467–72.

    CAS  PubMed  Google Scholar 

  28. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22:6309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fortin A, Cregan SP, MacLaurin JG, Kushwaha N, Hickman ES, Thompson CS, et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J Cell Biol. 2001;155:207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaafari N, Henley JM, Hanley JG. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking. J Neurosci. 2012;32:11618–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang M, Ramasamy VS, Kang HK, Jo J. Oleuropein promotes hippocampal LTP via intracellular calcium mobilization and Ca(2+)-permeable AMPA receptor surface recruitment. Neuropharmacology. 2020;176:108196.

    CAS  PubMed  Google Scholar 

  32. Yap KA, Shetty MS, Garcia-Alvarez G, Lu B, Alagappan D, Oh-Hora M, et al. STIM2 regulates AMPA receptor trafficking and plasticity at hippocampal synapses. Neurobiol Learn Mem. 2017;138:54–61.

    CAS  PubMed  Google Scholar 

  33. Kim YJ, Khoshkhoo S, Frankowski JC, Zhu B, Abbasi S, Lee S, et al. Chd2 is necessary for neural circuit development and long-term memory. Neuron. 2018;100:1180–93.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Leach PT, Poplawski SG, Kenney JW, Hoffman B, Liebermann DA, Abel T, et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learn Mem. 2012;19:319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seese RR, Maske AR, Lynch G, Gall CM. Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology. 2014;39:1664–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahman MR, Petralia MC, Ciurleo R, Bramanti A, Fagone P, Shahjaman M, et al. Comprehensive analysis of RNA-Seq gene expression profiling of brain transcriptomes reveals novel genes, regulators, and pathways in autism spectrum disorder. Brain Sci. 2020;10:747.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hurley S, Mohan C, Suetterlin P, Ellingford R, Riegman KLH, Ellegood J, et al. Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development. Mol Autism. 2021;12:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R. Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology. 2009;204:361–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicoll RA. A brief history of long-term potentiation. Neuron. 2017;93:281–90.

    CAS  PubMed  Google Scholar 

  40. Sudhof TC, Malenka RC. Understanding synapses: past, present, and future. Neuron. 2008;60:469–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ujjainwala AL, Courtney CD, Wojnowski NM, Rhodes JS, Christian CA. Differential impacts on multiple forms of spatial and contextual memory in diazepam binding inhibitor knockout mice. J Neurosci Res. 2019;97:683–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heglind M, Cederberg A, Aquino J, Lucas G, Ernfors P, Enerbäck S. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight. Mol Cell Biol. 2005;25:5616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen YJ, Deng SM, Chen HW, Tsao CH, Chen WT, Cheng SJ, et al. Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus. Proc Natl Acad Sci USA. 2021;118:e2109040118.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci. 2020;23:1067–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997;17:357–61.

    CAS  PubMed  Google Scholar 

  46. Asai T, Liu Y, Di Giandomenico S, Bae N, Ndiaye-Lobry D, Deblasio A, et al. Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells. Blood. 2012;120:1601–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. MacDonald HR, Wevrick R. The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997;6:1873–8.

    CAS  PubMed  Google Scholar 

  48. Wu RN, Hung WC, Chen CT, Tsai LP, Lai WS, Min MY, et al. Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader-Willi syndrome. J Neurodev Disord. 2020;12:21.

    PubMed  PubMed Central  Google Scholar 

  49. Kuwajima T, Hasegawa K, Yoshikawa K. Necdin promotes tangential migration of neocortical interneurons from basal forebrain. J Neurosci. 2010;30:3709–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller NL, Wevrick R, Mellon PL. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009;18:248–60.

    CAS  PubMed  Google Scholar 

  51. Karge A, Bonar NA, Wood S, Petersen CP. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. Elife. 2020;9:e47293.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito H, Morishita R, Sudo K, Nishimura YV, Inaguma Y, Iwamoto I, et al. Biochemical and morphological characterization of MAGI-1 in neuronal tissue. J Neurosci Res. 2012;90:1776–81.

    CAS  PubMed  Google Scholar 

  54. Chibuk TK, Bischof JM, Wevrick R. A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. BMC Genet. 2001;2:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, et al. SRPX2 mutations in disorders of language cortex and cognition. Proc Natl Acad Sci USA. 2006;15:1195–207.

    CAS  Google Scholar 

  56. Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63.

    CAS  PubMed  Google Scholar 

  57. Mazan-Mamczarz K, Galbán S, López de Silanes I, Martindale JL, Atasoy U, Keene JD, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA. 2003;100:8354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, et al. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 2011;25:1528–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nosyreva E, Kavalali ET. Activity-dependent augmentation of spontaneous neurotransmission during endoplasmic reticulum stress. J Neurosci. 2010;30:7358–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lahr RM, Fonseca BD, Ciotti GE, Al-Ashtal HA, Jia JJ, Niklaus MR, et al. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. eLife. 2017;6:e24146.

    PubMed  PubMed Central  Google Scholar 

  61. Ogami K, Oishi Y, Sakamoto K, Okumura M, Yamagishi R, Inoue T, et al. mTOR- and LARP1-dependent regulation of TOP mRNA poly(A) tail and ribosome loading. Cell Rep. 2022;41:111548.

    CAS  PubMed  Google Scholar 

  62. Gentilella A, Morón-Duran FD, Fuentes P, Zweig-Rocha G, Riaño-Canalias F, Pelletier J, et al. Autogenous control of 5′TOP mRNA stability by 40S Ribosomes. Mol Cell. 2017;67:55–70.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun W, Laubach K, Lucchessi C, Zhang Y, Chen M, Zhang J, et al. Fine-tuning p53 activity by modulating the interaction between eukaryotic translation initiation factor eIF4E and RNA-binding protein RBM38. Genes Dev. 2021;35:542–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Delbridge ARD, Kueh AJ, Ke F, Zamudio NM, El-Saafin F, Jansz N, et al. Loss of p53 causes stochastic aberrant X-Chromosome inactivation and female-specific neural tube defects. Cell Rep. 2019;27:442–54.e5.

    CAS  PubMed  Google Scholar 

  65. LaRese TP, Rheaume BA, Abraham R, Eipper BA, Mains RE. Sex-specific gene expression in the mouse nucleus accumbens before and after cocaine exposure. J Endoc Soc. 2019;3:468–87.

    CAS  Google Scholar 

  66. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA. 2007;104:16633–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Berger C, Qian Y, Chen X. The p53-estrogen receptor loop in cancer. Curr Mol Med. 2013;13:1229–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institute of Health R01NS105615, R01MH124827 and R21MH122840 to N-P.T.

Author information

Authors and Affiliations

Authors

Contributions

KYL and NPT designed the research. KYL, HW and YY performed the research and analyzed the data. CAC-H and JSR provided essential instrumental support. KYL and NPT wrote the manuscript.

Corresponding authors

Correspondence to Kwan Young Lee or Nien-Pei Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.Y., Wang, H., Yook, Y. et al. Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning. Mol Psychiatry 28, 3782–3794 (2023). https://doi.org/10.1038/s41380-023-02268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02268-9

This article is cited by

Search

Quick links