Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SLUG is a key regulator of epithelial-mesenchymal transition in pleomorphic adenoma

Abstract

The histogenesis of pleomorphic adenoma (PA) of the salivary glands remains controversial. PAs are characterized by the transition of epithelial cells to spindled mesenchymal cells, known as epithelial-mesenchymal transition (EMT). The present study aimed to identify a major EMT-inducing transcription factor (EMT-TF) in PAs. Real-time PCR analysis of SNAIL, SLUG, ZEB1, and TWIST1 demonstrated that only SLUG was significantly upregulated in normal salivary glands and PAs. Combined in situ hybridization for SLUG and multiplex immunohistochemistry for CK19 and P63 revealed that SLUG was specifically expressed in the myoepithelial cells of normal salivary glands. In PAs, SLUG was expressed in neoplastic myoepithelial cells and stromal cells but not in the luminal cells lining the inner layers of tumor glands. SLUG expression showed no correlation with PLAG1 expression, and in vitro experiments demonstrated that PLAG1 suppression in primary cultured PA cells or PLAG1 overexpression in HEK 293 T cells did not affect SLUG levels, indicating that PLAG1 was not involved in the upregulation of SLUG in PAs. The suppression of SLUG expression in cultured PA cells resulted in a morphology change to a less elongated shape and attenuated tumor growth. In addition, SLUG downregulation led to increased E-cadherin and decreased N-cadherin and vimentin expression levels along with decreased migratory activity in cultured PA cells. These findings suggest that SLUG is a major TF that can induce EMT in PAs. In summary, SLUG is specifically and highly expressed in the myoepithelial cells and stromal cells of PAs and is a key regulator of EMT in PAs.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Expression of epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) in normal parotid glands and pleomorphic adenomas (PAs).
Fig. 2: Combined RNA in situ hybridization for SLUG and multiple immunohistochemistry for CK19 and P63 in normal parotid glands.
Fig. 3: RNA in situ hybridization for epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) in pleomorphic adenomas (PAs).
Fig. 4: SLUG expression according to cytologic differentiation of myoepithelial cells in pleomorphic adenomas.
Fig. 5: Combined RNA in situ hybridization for SLUG and multiple immunohistochemistry for CK19 and P63 in pleomorphic adenomas.
Fig. 6: Correlation between SLUG and epithelial-mesenchymal transition marker expression in pleomorphic adenomas.
Fig. 7: SLUG and PLAG1 expression in pleomorphic adenomas (PAs).
Fig. 8: Association of SLUG downregulation with reduced growth and mesenchymal features in primary cultured pleomorphic adenoma (PA) cells.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barnes L., Eveson J., Reichart P., Sidransky D. World Health Organization classifications tumours. Pathology and genetics of head and neck tumours. (IARC, 2005).

  2. Mendenhall, W. M., Mendenhall, C. M., Werning, J. W., Malyapa, R. S. & Mendenhall, N. P. Salivary gland pleomorphic adenoma. Am. J. Clin. Oncol. 31, 95–99 (2008).

    PubMed  Article  Google Scholar 

  3. Antony, J., Gopalan, V., Smith, R. A. & Lam, A. K. Carcinoma ex pleomorphic adenoma: a comprehensive review of clinical, pathological and molecular data. Head Neck Pathol. 6, 1–9 (2012).

    PubMed  Article  Google Scholar 

  4. Stenman, G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol. 7, 12–19 (2013).

    PubMed Central  Article  Google Scholar 

  5. Kas, K. et al. Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t (3; 8)(p21; q12) translocations. Nat. Genet. 15, 170–174 (1997).

    CAS  PubMed  Article  Google Scholar 

  6. Geurts, J. M., Schoenmakers, E. F., Röijer, E., Stenman, G. & Van de Ven, W. J. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res. 57, 13–17 (1997).

    CAS  PubMed  Google Scholar 

  7. Geurts, J. M. et al. Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas. Oncogene 16, 865–872 (1998).

    CAS  PubMed  Article  Google Scholar 

  8. Katabi, N. et al. PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: a comparative study with PLAG1 genetic abnormalities. Histopathology 72, 285–293 (2018).

    PubMed  Article  Google Scholar 

  9. Mito, J. K., Jo, V. Y., Chiosea, S. I., Dal Cin, P. & Krane, J. F. HMGA 2 is a specific immunohistochemical marker for pleomorphic adenoma and carcinoma ex‐pleomorphic adenoma. Histopathology 71, 511–521 (2017).

    PubMed  Article  Google Scholar 

  10. Savera, A. T. & Zarbo, R. J. Defining the role of myoepithelium in salivary gland neoplasia. Adv. Anat. Pathol. 11, 69–85 (2004).

    PubMed  Article  Google Scholar 

  11. Aigner, T., Neureiter, D., Völker, U., Belke, J. & Kirchner, T. Epithelial–mesenchymal transdifferentiation and extracellular matrix gene expression in pleomorphic adenomas of the parotid salivary gland. J. Pathol. 186, 178–185 (1998).

    CAS  PubMed  Article  Google Scholar 

  12. Triantafyllou, A. et al. Functional histology of salivary gland pleomorphic adenoma: an appraisal. Head Neck Pathol. 9, 387–404 (2015).

    PubMed  Article  Google Scholar 

  13. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. Pardis, S., Zare, R., Jaafari-Ashkavandi, Z., Ashraf, M. J. & Khademi, B. Twist expression in pleomorphic adenoma, adenoid cystic carcinoma and mucoepidermoid carcinoma of salivary glands. Turk. Patoloji Derg. 32, 15–21 (2016).

    CAS  PubMed  Google Scholar 

  15. Matsumoto, Y. et al. Transcription factors related to chondrogenesis in pleomorphic adenoma of the salivary gland: a mechanism of mesenchymal tissue formation. Lab. Investig. 96, 16–24 (2016).

    CAS  PubMed  Article  Google Scholar 

  16. Shen, M., Wen, Y., Hua, C. & Xiao, J. The expression of Twist in salivary adenoid cystic carcinoma and its clinicopathological significance. Chin. J. Clin. Oncol. 9, 187–192 (2010).

    CAS  Article  Google Scholar 

  17. Kim, Y. H. et al. Evaluation of the radiation response and regenerative effects of mesenchymal stem cell‐conditioned medium in an intestinal organoid system. Biotechnol. Bioeng. 117, 3639–3650 (2020).

    CAS  PubMed  Article  Google Scholar 

  18. Jang, B. G. et al. Expression profile of LGR5 and its prognostic significance in colorectal cancer progression. Am. J. Pathol. 188, 2236–2250 (2018).

    CAS  PubMed  Article  Google Scholar 

  19. Maruyama, S. et al. Establishment and characterization of pleomorphic adenoma cell systems: an in-vitro demonstration of carcinomas arising secondarily from adenomas in the salivary gland. BMC Cancer 9, 247 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Kim, Y. et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol. 70, 97–107 (2019).

    CAS  PubMed  Article  Google Scholar 

  21. Park, J. H. et al. Radiation-Activated PI3K/AKT Pathway Promotes the Induction of Cancer Stem-Like Cells via the Upregulation of SOX2 in Colorectal. Cancer. Cells 10, 135 (2021).

    Google Scholar 

  22. Kusafuka, K., Yamaguchi, A., Kayano, T. & Takemura, T. Immunohistochemical localization of members of the transforming growth factor (TGF)‐β superfamily in normal human salivary glands and pleomorphic adenomas. J. Oral Pathol. Med. 30, 413–420 (2001).

    CAS  PubMed  Article  Google Scholar 

  23. Enescu, A., Enescu, A. Ş., Florou, C. & Petrescu, F. E-cadherin and α-SMA expression in the epithelial-mesenchymal transition of salivary glands pleomorphic adenomas. Rom. J. Morphol. Embryol. 55, 1383–1387 (2014).

    PubMed  Google Scholar 

  24. Devi A., et al. Potential immmunohistochemical markers to characterize epithelialmesenchymal transition in pleomorphic adenoma. J. Exp. Ther. Oncol. 13, 1–7 (2019).

    CAS  PubMed  Google Scholar 

  25. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Voz, M. L. et al. Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene 23, 179–191 (2004).

    CAS  PubMed  Article  Google Scholar 

  27. de Brito, B. S. et al. Loss of expression of Plag1 in malignant transformation from pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Hum. Pathol. 57, 152–159 (2016).

    PubMed  Article  Google Scholar 

  28. Rotellini, M., Palomba, A., Baroni, G. & Franchi, A. Diagnostic utility of PLAG1 immunohistochemical determination in salivary gland tumors. Appl. Immunohistochem. Mol. Morphol. 22, 390–394 (2014).

    CAS  PubMed  Article  Google Scholar 

  29. Debiec-Rychter, M. et al. Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: cytogenetic evidence of common origin of phenotypically diverse cells. Lab. Investig. 81, 1289–1297 (2001).

    CAS  PubMed  Article  Google Scholar 

  30. Lee, J. H. et al. PLAG1, SOX10, and Myb expression in benign and malignant salivary gland neoplasms. J. Pathol. Transl. Med. 53, 23 (2019).

    PubMed  Article  Google Scholar 

  31. Matsuyama, A., Hisaoka, M., Nagao, Y. & Hashimoto, H. Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: a molecular genetic and immunohistochemical study. Virchows Arch. 458, 583–592 (2011).

    CAS  PubMed  Article  Google Scholar 

  32. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    PubMed  Article  Google Scholar 

  33. Plaks, V. et al. Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep. 3, 70–78 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Prater, M. D. et al. Mammary stem cells have myoepithelial cell properties. Nat. Cell Biol. 16, 942–950 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Tata, A. et al. Myoepithelial cells of submucosal glands can function as reserve stem cells to regenerate airways after injury. Cell Stem Cell 22, 668–683. e666 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Lynch, T. J. et al. Submucosal gland myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell 22, 653–667. e655 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Kwak, M., Alston, N. & Ghazizadeh, S. Identification of stem cells in the secretory complex of salivary glands. J. Dent. Res. 95, 776–783 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate Professor Woo Ho Kim of Superbiochips for his help with the combined RNA in situ hybridization and immunohistochemical analysis.

Funding

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. 2021R1C1C1011172) (to B.J.), (NO. 2020R1I1A1A01069168) (to H.K.) and research fund of Hanyang University (HY-202000000002704) (to J.K.M).

Author information

Authors and Affiliations

Authors

Contributions

H.K., S.B.L., and J.K.M. performed the experiments and drafted the paper. C.M.P., G.C.L., and M.B.K. contributed to data collection. J.H.P., D.I.K., E.P., and C.L. provided interpretation of data. Y.K. provided data analysis and interpretation of RNA in situ hybridization and immunohistochemistry. B.J. designed the study, supervised the experiments, and reviewed the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Bogun Jang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Institutional Review Board of JNUH (2019–04–007). Institutional Review Board confirmed that informed consent for FFPE samples was waived because of the retrospective nature of the study, while informed consent was obtained for the primary culture of PA cells. All procedures were in accordance with the ethical standards of the Helsinki Declaration of 1964 and later versions.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S.B., Myung, J.K. et al. SLUG is a key regulator of epithelial-mesenchymal transition in pleomorphic adenoma. Lab Invest 102, 631–640 (2022). https://doi.org/10.1038/s41374-022-00739-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41374-022-00739-1

Search

Quick links