Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model


Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl or HCO3 was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl/HCO3-free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The newborn pig gallbladder epithelium expresses apical CFTR.
Fig. 2: Newborn CF pig gallbladder tissue lack CFTR-mediated anion transport.
Fig. 3: CF pig gallbladder organoids lack swelling response.
Fig. 4: Single-cell RNA-sequencing demonstrates a single population of gallbladder epithelial cells expressing CFTR.
Fig. 5: Newborn CF pig gallbladders demonstrate limited transcriptional changes compared to non-CF.
Fig. 6: Newborn CF pigs demonstrate mucus accumulation within the gallbladder lumen, but not in epithelium.


  1. 1.

    Jackson AD, Goss CH. Epidemiology of CF: how registries can be used to advance our understanding of the CF population. J Cyst Fibros. 2018;17:297–305.

    PubMed  Google Scholar 

  2. 2.

    Welsh MJ, Ramsey BW, Accurso F, Cutting GR. Cystic fibrosis. In: Beaudet AL, Vogelstein B, Kinzler KW, et al. editors. The online metabolic and molecular bases of inherited disease. New York, NY: The McGraw-Hill Companies, Inc; 2014.

    Google Scholar 

  3. 3.

    Colombo C, Battezzati PM, Crosignani A, Morabito A, Costantini D, Padoan R, et al. Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, and outcome. Hepatology. 2002;36:1374–82.

    PubMed  Google Scholar 

  4. 4.

    Lamireau T, Monnereau S, Martin S, Marcotte JE, Winnock M, Alvarez F. Epidemiology of liver disease in cystic fibrosis: a longitudinal study. J Hepatol. 2004;41:920–5.

    PubMed  Google Scholar 

  5. 5.

    Scott-Jupp R, Lama M, Tanner MS. Prevalence of liver disease in cystic fibrosis. Arch Dis Child. 1991;66:698–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bartlett JR, Friedman KJ, Ling SC, Pace RG, Bell SC, Bourke B, et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA. 2009;302:1076–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Boelle PY, Debray D, Guillot L, Clement A, Corvol H, French CFMGSI. Cystic fibrosis liver disease: outcomes and risk factors in a large cohort of french patients. Hepatology. 2019;69:1648–56.

    CAS  PubMed  Google Scholar 

  8. 8.

    Toledano MB, Mukherjee SK, Howell J, Westaby D, Khan SA, Bilton D, et al. The emerging burden of liver disease in cystic fibrosis patients: a UK nationwide study. PLoS ONE. 2019;14:e0212779.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Waters DL, Dorney SF, Gruca MA, Martin HC, Howman-Giles R, Kan AE, et al. Hepatobiliary disease in cystic fibrosis patients with pancreatic sufficiency. Hepatology. 1995;21:963–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Kutney K, Donnola SB, Flask CA, Gubitosi-Klug R, O’Riordan M, McBennett K, et al. Lumacaftor/ivacaftor therapy is associated with reduced hepatic steatosis in cystic fibrosis patients. World J Hepatol. 2019;11:761–72.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dray-Charier N, Paul A, Veissiere D, Mergey M, Scoazec JY, Capeau J, et al. Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells. Lab Investig. 1995;73:828–36.

    CAS  PubMed  Google Scholar 

  12. 12.

    Moser AJ, Gangopadhyay A, Bradbury NA, Peters KW, Frizzell RA, Bridges RJ. Electrogenic bicarbonate secretion by prairie dog gallbladder. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1683–94.

    CAS  PubMed  Google Scholar 

  13. 13.

    Assis DN, Debray D. Gallbladder and bile duct disease in cystic fibrosis. J Cyst Fibros. 2017;16(Suppl 2):S62–9.

    PubMed  Google Scholar 

  14. 14.

    Curry MP, Hegarty JE. The gallbladder and biliary tract in cystic fibrosis. Curr Gastroenterol Rep. 2005;7:147–53.

    PubMed  Google Scholar 

  15. 15.

    Nagel RA, Westaby D, Javaid A, Kavani J, Meire HB, Lombard MG, et al. Liver disease and bile duct abnormalities in adults with cystic fibrosis. Lancet. 1989;2:1422–5.

    CAS  PubMed  Google Scholar 

  16. 16.

    Rovsing H, Sloth K. Micro-gallbladder and biliary calculi in mucoviscidosis. Acta Radiol Diagn. 1973;14:588–92.

    CAS  Google Scholar 

  17. 17.

    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    PubMed  Google Scholar 

  18. 18.

    Strong TV, Boehm K, Collins FS. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Investig. 1994;93:347–54.

    CAS  PubMed  Google Scholar 

  19. 19.

    Chinet T, Fouassier L, Dray-Charier N, Imam-Ghali M, Morel H, Mergey M, et al. Regulation of electrogenic anion secretion in normal and cystic fibrosis gallbladder mucosa. Hepatology. 1999;29:5–13.

    CAS  PubMed  Google Scholar 

  20. 20.

    Dray-Charier N, Paul A, Scoazec JY, Veissiere D, Mergey M, Capeau J, et al. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients. Hepatology. 1999;29:1624–34.

    CAS  PubMed  Google Scholar 

  21. 21.

    Cuthbert AW. Bicarbonate secretion in the murine gallbladder–lessons for the treatment of cystic fibrosis. JOP. 2001;2:257–62.

    CAS  PubMed  Google Scholar 

  22. 22.

    Debray D, Rainteau D, Barbu V, Rouahi M, El Mourabit H, Lerondel S, et al. Defects in gallbladder emptying and bile Acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology. 2012;142:1581–91. e1586

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bodewes FA, Bijvelds MJ, de Vries W, Baller JF, Gouw AS, de Jonge HR, et al. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice. PLoS ONE. 2015;10:e0117599.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008;321:1837–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372:351–62.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am J Pathol. 2010;176:1377–89.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Uc A, Giriyappa R, Meyerholz DK, Griffin M, Ostedgaard LS, Tang XX, et al. Pancreatic and biliary secretion are both altered in cystic fibrosis pigs. Am J Physiol Gastrointest Liver Physiol. 2012;303:G961–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29ra31.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Meyerholz DK, Lambertz AM, Reznikov LR, Ofori-Amanfo GK, Karp PH, McCray PB Jr., et al. Immunohistochemical detection of markers for translational studies of lung disease in pigs and humans. Toxicol Pathol. 2016;44:434–41.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, et al. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 2010;143:911–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med. 2017;23:954–63.

    CAS  PubMed  Google Scholar 

  32. 32.

    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    CAS  PubMed  Google Scholar 

  33. 33.

    Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90.

    CAS  PubMed  Google Scholar 

  34. 34.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902. e1821

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology. 1993;105:1857–64.

    CAS  PubMed  Google Scholar 

  41. 41.

    Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487:109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Ostedgaard LS, et al. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci USA. 2016;113:5382–7.

    CAS  PubMed  Google Scholar 

  43. 43.

    Joo NS, Cho HJ, Khansaheb M, Wine JJ. Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs. J Clin Investig. 2010;120:3161–6.

    CAS  PubMed  Google Scholar 

  44. 44.

    Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014;345:818–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Clarke LL, Stien X, Walker NM. Intestinal bicarbonate secretion in cystic fibrosis mice. JOP. 2001;2:263–7.

    CAS  PubMed  Google Scholar 

  46. 46.

    Gustafsson JK, Ermund A, Ambort D, Johansson ME, Nilsson HE, Thorell K, et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med. 2012;209:1263–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, et al. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight. 2018;3:e97199.

    PubMed Central  Google Scholar 

  48. 48.

    Yang N, Garcia MA, Quinton PM. Normal mucus formation requires cAMP-dependent HCO3- secretion and Ca2+-mediated mucin exocytosis. J Physiol. 2013;591:4581–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Quinton PM. The neglected ion: HCO3. Nat Med. 2001;7:292–3.

    CAS  PubMed  Google Scholar 

  50. 50.

    van Klinken BJ, Dekker J, van Gool SA, van Marle J, Buller HA, Einerhand AW. MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am J Physiol. 1998;274:G871–8.

    PubMed  Google Scholar 

  51. 51.

    Vandenhaute B, Buisine MP, Debailleul V, Clement B, Moniaux N, Dieu MC, et al. Mucin gene expression in biliary epithelial cells. J Hepatol. 1997;27:1057–66.

    CAS  PubMed  Google Scholar 

  52. 52.

    Reid CJ, Hyde K, Ho SB, Harris A. Cystic fibrosis of the pancreas: involvement of MUC6 mucin in obstruction of pancreatic ducts. Mol Med. 1997;3:403–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sasaki M, Ikeda H, Nakanuma Y. Expression profiles of MUC mucins and trefoil factor family (TFF) peptides in the intrahepatic biliary system: physiological distribution and pathological significance. Prog Histochem Cytochem. 2007;42:61–110.

    CAS  PubMed  Google Scholar 

  54. 54.

    Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem. 2011;286:766–76.

    CAS  PubMed  Google Scholar 

  55. 55.

    Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol. 1999;276:G280–286.

    CAS  PubMed  Google Scholar 

  56. 56.

    Banales JM, Arenas F, Rodriguez-Ortigosa CM, Saez E, Uriarte I, Doctor RB, et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology. 2006;43:266–75.

    CAS  PubMed  Google Scholar 

  57. 57.

    Mennone A, Biemesderfer D, Negoianu D, Yang CL, Abbiati T, Schultheis PJ, et al. Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol. 2001;280:G247–54.

    CAS  PubMed  Google Scholar 

  58. 58.

    Fiorotto R, Scirpo R, Trauner M, Fabris L, Hoque R, Spirli C, et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-kappaB-mediated inflammatory response in mice. Gastroenterology. 2011;141:1498–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wang AP, Migita K, Ito M, Takii Y, Daikoku M, Yokoyama T, et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun. 2005;25:85–91.

    PubMed  Google Scholar 

  60. 60.

    Cho WK, Boyer JL. Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes. Gastroenterology. 1999;117:420–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Korner M, Hayes GM, Rehmann R, Zimmermann A, Scholz A, Wiedenmann B, et al. Secretin receptors in the human liver: expression in biliary tract and cholangiocarcinoma, but not in hepatocytes or hepatocellular carcinoma. J Hepatol. 2006;45:825–35.

    PubMed  Google Scholar 

  62. 62.

    Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 2001;34:351–9.

    CAS  PubMed  Google Scholar 

  63. 63.

    Soroka CJ, Ballatori N, Boyer JL. Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Semin Liver Dis. 2010;30:178–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Soroka CJ, Mennone A, Hagey LR, Ballatori N, Boyer JL. Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis. Hepatology. 2010;51:181–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Tabibian JH, Masyuk AI, Masyuk TV, O’Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol. 2013;3:541–65.

    PubMed  Google Scholar 

  66. 66.

    Peters RH, van Doorninck JH, French PJ, Ratcliff R, Evans MJ, Colledge WH, et al. Cystic fibrosis transmembrane conductance regulator mediates the cyclic adenosine monophosphate-induced fluid secretion but not the inhibition of resorption in mouse gallbladder epithelium. Hepatology. 1997;25:270–7.

    CAS  PubMed  Google Scholar 

  67. 67.

    Meyerholz DK, Stoltz DA, Gansemer ND, Ernst SE, Cook DP, Strub MD, et al. Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Lab Investig. 2018;98:825–38.

    CAS  PubMed  Google Scholar 

  68. 68.

    Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, et al. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology. 2007;133:1592–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Kuver R, Wong T, Klinkspoor JH, Lee SP. Absence of CFTR is associated with pleiotropic effects on mucins in mouse gallbladder epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1148–54.

    CAS  PubMed  Google Scholar 

  70. 70.

    Kuver R, Klinkspoor JH, Osborne WR, Lee SP. Mucous granule exocytosis and CFTR expression in gallbladder epithelium. Glycobiology. 2000;10:149–57.

    CAS  PubMed  Google Scholar 

  71. 71.

    Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL. Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J Clin Investig. 2015;125:1056–68.

    PubMed  Google Scholar 

  72. 72.

    Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, et al. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell. 2005;16:2154–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wu JV, Krouse ME, Wine JJ. Acinar origin of CFTR-dependent airway submucosal gland fluid secretion. Am J Physiol Lung Cell Mol Physiol. 2007;292:L304–11.

    CAS  PubMed  Google Scholar 

  74. 74.

    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560:319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560:377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kesimer M, Cullen J, Cao R, Radicioni G, Mathews KG, Seiler G, et al. Excess secretion of gel-forming mucins and associated innate defense proteins with defective mucin un-packaging underpin gallbladder mucocele formation in dogs. PLoS ONE. 2015;10:e0138988.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Gookin JL, Mathews KG, Cullen J, Seiler G. Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation. PLoS ONE. 2018;13:e0191076.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Feigal RJ, Shapiro BL. Mitochondrial calcium uptake and oxygen consumption in cystic fibrosis. Nature. 1979;278:276–7.

    CAS  PubMed  Google Scholar 

  79. 79.

    Antigny F, Girardin N, Raveau D, Frieden M, Becq F, Vandebrouck C. Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion. 2009;9:232–41.

    CAS  PubMed  Google Scholar 

  80. 80.

    Shapiro BL, Feigal RJ, Lam LF. Mitrochondrial NADH dehydrogenase in cystic fibrosis. Proc Natl Acad Sci USA. 1979;76:2979–83.

    CAS  PubMed  Google Scholar 

  81. 81.

    Shapiro BL, Lam LF, Feigal RJ. Mitochondrial NADH dehydrogenase in cystic fibrosis: enzyme kinetics in cultured fibroblasts. Am J Hum Genet. 1982;34:846–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kelly-Aubert M, Trudel S, Fritsch J, Nguyen-Khoa T, Baudouin-Legros M, Moriceau S, et al. GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Hum Mol Genet. 2011;20:2745–59.

    CAS  PubMed  Google Scholar 

  83. 83.

    Atlante A, Favia M, Bobba A, Guerra L, Casavola V, Reshkin SJ. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. J Bioenerg Biomembr. 2016;48:197–210.

    CAS  PubMed  Google Scholar 

  84. 84.

    Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG. Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS ONE. 2008;3:e3367.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Borcherding DC, Siefert ME, Lin S, Brewington J, Sadek H, Clancy JP, et al. Clinically-approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia. J Clin Investig. 2019;129:3448–63.

    PubMed  Google Scholar 

Download references


We thank M. Abou Alaiwa, A. Comellas, H. de Jonge, M. Duffey, P. McCray, T. Moninger, F. Sampaziotis, M. Welsh, J. Zabner, the University of Iowa Office of Animal Resources, the University of Iowa Genomics Division, and the University of Iowa Comparative Pathology Lab for excellent assistance, advice, and discussions. This work was supported, in part, by NIH (HL091842, GM007337, and HL007638) and the Cystic Fibrosis Foundation (CFF Iowa Research Development Program).

Author information



Corresponding authors

Correspondence to David K. Meyerholz or David A. Stoltz.

Ethics declarations

Conflict of interest

The University of Iowa Research Foundation has licensed materials and technologies related to CF pigs to Exemplar Genetics. DAS is a coinventor of CF pigs.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarei, K., Stroik, M.R., Gansemer, N.D. et al. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0474-8

Download citation