Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases

Abstract

Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.

Key points

  • Reactivation of morphogen signalling (such as Notch, Wnt–β-catenin and Hedgehog) takes place during biliary repair and orchestrates the balance between biliary remodelling and fibrogenesis and transdifferentiation and carcinogenesis.

  • Polycystins control fundamental Ca2+–cAMP-dependent cell signalling processes in cholangiocytes and, when defective, these proteins enhance cell proliferation and activate angiogenic signalling that leads to cystogenesis.

  • Polycystin-2 can be modulated in response to biliary inflammation and mediates vascular endothelial growth factor secretion and cholangiocyte proliferation in acquired cholangiopathies.

  • Genetic defects in fibrocystin are associated with altered β-catenin signalling, which generates an auto-inflammatory response with secretion of chemokines that are able to attract macrophages, resulting in biliary fibrogenesis.

  • Cystic fibrosis transmembrane conductance regulator (CFTR) regulates cholangiocyte innate immunity and maintains Toll-like receptor tolerance; loss of CFTR predisposes the biliary epithelium to inflammation and damage in response to gut-derived microbial components.

  • Pathological mechanisms identified in genetic cholangiopathies can be applied to acquired cholangiopathies and might represent potential targets for the next generation of treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Notch signalling in biliary development and disease.
Fig. 2: Signalling mechanisms involved in cyst growth in ADPKD.
Fig. 3: Novel mechanisms of biliary fibrosis in ARPKD.
Fig. 4: CFTR function in cholangiocytes.

Similar content being viewed by others

References

  1. Strazzabosco, M. & Fabris, L. Functional anatomy of normal bile ducts. Anat. Rec. 291, 653–660 (2008).

    Google Scholar 

  2. Lazaridis, K. N., Strazzabosco, M. & Larusso, N. F. The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127, 1565–1577 (2004).

    CAS  PubMed  Google Scholar 

  3. Strazzabosco, M., Fabris, L. & Spirli, C. Pathophysiology of cholangiopathies. J. Clin. Gastroenterol. 39, S90–S102 (2005).

    PubMed  Google Scholar 

  4. Lazaridis, K. N. & LaRusso, N. F. The cholangiopathies. Mayo Clin. Proc. 90, 791–800 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Spada, M., Riva, S., Maggiore, G., Cintorino, D. & Gridelli, B. Pediatric liver transplantation. World J. Gastroenterol. 15, 648–674 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Srivastava, A. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol. 4, 25–36 (2014).

    PubMed  Google Scholar 

  7. Falguieres, T., Ait-Slimane, T., Housset, C. & Maurice, M. ABCB4: insights from pathobiology into therapy. Clin. Res. Hepatol. Gastroenterol. 38, 557–563 (2014).

    CAS  PubMed  Google Scholar 

  8. Van Haele, M. & Roskams, T. Hepatic progenitor cells: an update. Gastroenterol. Clin. North Am. 46, 409–420 (2017).

    PubMed  Google Scholar 

  9. Duncan, A. W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466–481 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Cardinale, V. et al. Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology 55, 2041–2042 (2012).

    PubMed  Google Scholar 

  11. Fabris, L., Spirli, C., Cadamuro, M., Fiorotto, R. & Strazzabosco, M. Emerging concepts in biliary repair and fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G102–G116 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Strazzabosco, M. & Fabris, L. Development of the bile ducts: essentials for the clinical hepatologist. J. Hepatol. 56, 1159–1170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ober, E. A. & Lemaigre, F. P. Development of the liver: insights into organ and tissue morphogenesis. J. Hepatol. 68, 1049–1062 (2018).

    CAS  PubMed  Google Scholar 

  14. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    CAS  PubMed  Google Scholar 

  15. Fabris, L. et al. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 43, 1001–1012 (2006).

    CAS  PubMed  Google Scholar 

  16. Lemaigre, F. P. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137, 62–79 (2009).

    CAS  PubMed  Google Scholar 

  17. Schaub, J. R. et al. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fabris, L. et al. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 47, 719–728 (2008).

    PubMed  Google Scholar 

  19. Bhattaram, P. et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat. Commun. 1, 9 (2010).

    PubMed  Google Scholar 

  20. Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel, S. H., Camargo, F. D. & Yimlamai, D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 152, 533–545 (2017).

    CAS  PubMed  Google Scholar 

  23. Lemaigre, F. P. Molecular mechanisms of biliary development. Prog. Mol. Biol. Transl Sci. 97, 103–126 (2010).

    CAS  PubMed  Google Scholar 

  24. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251 (1997).

    CAS  PubMed  Google Scholar 

  25. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat. Genet. 16, 235–242 (1997).

    CAS  PubMed  Google Scholar 

  26. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lykavieris, P., Hadchouel, M., Chardot, C. & Bernard, O. Outcome of liver disease in children with Alagille syndrome: a study of 163 patients. Gut 49, 431–435 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamath, B. M. et al. Outcomes of liver transplantation for patients with Alagille syndrome: the studies of pediatric liver transplantation experience. Liver Transpl. 18, 940–948 (2012).

    PubMed  Google Scholar 

  29. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  30. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    CAS  PubMed  Google Scholar 

  31. Geisler, F. & Strazzabosco, M. Emerging roles of Notch signaling in liver disease. Hepatology 61, 382–392 (2015).

    CAS  PubMed  Google Scholar 

  32. Borggrefe, T. & Oswald, F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646 (2009).

    CAS  PubMed  Google Scholar 

  33. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    CAS  PubMed  Google Scholar 

  34. Morell, C. M., Fiorotto, R., Fabris, L. & Strazzabosco, M. Notch signalling beyond liver development: emerging concepts in liver repair and oncogenesis. Clin. Res. Hepatol. Gastroenterol. 37, 447–454 (2013).

    CAS  PubMed  Google Scholar 

  35. Zong, Y. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 136, 1727–1739 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kodama, Y., Hijikata, M., Kageyama, R., Shimotohno, K. & Chiba, T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127, 1775–1786 (2004).

    CAS  PubMed  Google Scholar 

  37. Gerard, C., Tys, J. & Lemaigre, F. P. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin. Cell Dev. Biol. 66, 43–50 (2017).

    CAS  PubMed  Google Scholar 

  38. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fiorotto, R. et al. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J. Hepatol. 59, 124–130 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Invest. 122, 3914–3918 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morell, C. M. et al. Notch signaling and progenitor/ductular reaction in steatohepatitis. PLOS ONE 12, e0187384 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Fabris, L. et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am. J. Pathol. 171, 641–653 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 58, 1801–1813 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Strazzabosco, M. & Fabris, L. The balance between Notch/Wnt signaling regulates progenitor cells’ commitment during liver repair: mystery solved? J. Hepatol. 58, 181–183 (2013).

    CAS  PubMed  Google Scholar 

  46. Walter, T. J., Vanderpool, C., Cast, A. E. & Huppert, S. S. Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. Am. J. Pathol. 184, 1479–1488 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Andersson, E. R. et al. Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations. Gastroenterology 154, 1080–1095 (2018).

    CAS  PubMed  Google Scholar 

  48. Hofmann, J. J. et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137, 4061–4072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Masek, J. & Andersson, E. R. The developmental biology of genetic Notch disorders. Development 144, 1743–1763 (2017).

    CAS  PubMed  Google Scholar 

  50. Mitchell, E., Gilbert, M. & Loomes, K. M. Alagille syndrome. Clin. Liver Dis. 22, 625–641 (2018).

    PubMed  Google Scholar 

  51. Tsai, E. A. et al. THBS2 is a candidate modifier of liver disease severity in Alagille syndrome. Cell. Mol. Gastroenterol. Hepatol. 2, 663–675 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Thakurdas, S. M. et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 63, 550–565 (2016).

    CAS  PubMed  Google Scholar 

  53. Ryan, M. J. et al. Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology 48, 1989–1997 (2008).

    PubMed  Google Scholar 

  54. Strazzabosco, M. & Fabris, L. Notch signaling in hepatocellular carcinoma: guilty in association! Gastroenterology 143, 1430–1434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Villanueva, A. et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143, 1660–1669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dill, M. T. et al. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 57, 1607–1619 (2013).

    CAS  PubMed  Google Scholar 

  57. Guest, R. V. et al. Notch3 drives development and progression of cholangiocarcinoma. Proc. Natl Acad. Sci. USA 113, 12250–12255 (2016).

    CAS  PubMed  Google Scholar 

  58. Nijjar, S. S., Crosby, H. A., Wallace, L., Hubscher, S. G. & Strain, A. J. Notch receptor expression in adult human liver: a possible role in bile duct formation and hepatic neovascularization. Hepatology 34, 1184–1192 (2001).

    CAS  PubMed  Google Scholar 

  59. Nijjar, S. S., Wallace, L., Crosby, H. A., Hubscher, S. G. & Strain, A. J. Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am. J. Pathol. 160, 1695–1703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Andersson, E. R. & Lendahl, U. Therapeutic modulation of Notch signalling—are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).

    CAS  PubMed  Google Scholar 

  61. Morell, C. M. & Strazzabosco, M. Notch signaling and new therapeutic options in liver disease. J. Hepatol. 60, 885–890 (2014).

    CAS  PubMed  Google Scholar 

  62. van Aerts, R. M. M., van de Laarschot, L. F. M., Banales, J. M. & Drenth, J. P. H. Clinical management of polycystic liver disease. J. Hepatol. 68, 827–837 (2017).

    PubMed  Google Scholar 

  63. Gevers, T. J. & Drenth, J. P. Diagnosis and management of polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 101–108 (2013).

    CAS  PubMed  Google Scholar 

  64. Masyuk, T., Masyuk, A. & LaRusso, N. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr. Opin. Gastroenterol. 25, 265–271 (2009).

    CAS  PubMed  Google Scholar 

  65. Strazzabosco, M. & Somlo, S. Polycystic liver diseases: congenital disorders of cholangiocyte signaling. Gastroenterology 140, 1855–1859 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Masyuk, A. I. et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131, 911–920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Masyuk, A. I. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G725–G734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Masyuk, A. I. et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990–G999 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Masyuk, A. I. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1013–G1024 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gradilone, S. A. et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139, 304–314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bezerra, J. A. et al. Biliary atresia: clinical and research challenges for the twenty-first century. Hepatology 68, 1163–1173 (2018).

    Google Scholar 

  73. Rock, N. & McLin, V. Liver involvement in children with ciliopathies. Clin. Res. Hepatol. Gastroenterol. 38, 407–414 (2014).

    CAS  PubMed  Google Scholar 

  74. van de Laarschot, L. F. M. & Drenth, J. P. H. Genetics and mechanisms of hepatic cystogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1491–1497 (2018).

    PubMed  Google Scholar 

  75. Perugorria, M. J. et al. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat. Rev. Gastroenterol. Hepatol. 11, 750–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Perugorria, M. J. & Banales, J. M. Genetics: novel causative genes for polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 14, 391–392 (2017).

    CAS  PubMed  Google Scholar 

  77. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

    Google Scholar 

  78. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    CAS  PubMed  Google Scholar 

  79. Harris, R. A., Gray, D. W., Britton, B. J., Toogood, G. J. & Morris, P. J. Hepatic cystic disease in an adult polycystic kidney disease transplant population. Aust. NZ J. Surg. 66, 166–168 (1996).

    CAS  Google Scholar 

  80. Drenth, J. P., te Morsche, R. H., Smink, R., Bonifacino, J. S. & Jansen, J. B. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33, 345–347 (2003).

    CAS  PubMed  Google Scholar 

  81. Li, A. et al. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am. J. Hum. Genet. 72, 691–703 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Davila, S. et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36, 575–577 (2004).

    CAS  PubMed  Google Scholar 

  83. Besse, W. et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Invest. 127, 1772–1785 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Porath, B. et al. Mutations in GANAB, encoding the glucosidase IIalpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193–1207 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cnossen, W. R. et al. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proc. Natl Acad. Sci. USA 111, 5343–5348 (2014).

    CAS  PubMed  Google Scholar 

  86. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Raynaud, P. et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 53, 1959–1966 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Janssen, M. J., Salomon, J., Te Morsche, R. H. & Drenth, J. P. Loss of heterozygosity is present in SEC63 germline carriers with polycystic liver disease. PLOS ONE 7, e50324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Janssen, M. J. et al. Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology 141, 2056–2063 (2011).

    CAS  PubMed  Google Scholar 

  91. Pei, Y. et al. Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1524–1529 (1999).

    CAS  PubMed  Google Scholar 

  92. Watnick, T. J. et al. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol. Cell 2, 247–251 (1998).

    CAS  PubMed  Google Scholar 

  93. Banales, J. M. et al. The cAMP effectors Epac and protein kinase A (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology 49, 160–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Banales, J. M. et al. Hepatic cystogenesis is associated with abnormal expression and location of ion transporters and water channels in an animal model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 173, 1637–1646 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Urribarri, A. D. et al. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut 63, 1658–1667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Masyuk, A. I. et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 67, 1088–1108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Masyuk, T. V. et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125, 1303–1310 (2003).

    CAS  PubMed  Google Scholar 

  98. Masyuk, T. V. et al. Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression. Am. J. Pathol. 184, 110–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, S. O. et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Invest. 118, 3714–3724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Beaudry, J. B. et al. Proliferation-independent initiation of biliary cysts in polycystic liver diseases. PLOS ONE 10, e0132295 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Benhamouche-Trouillet, S. et al. Proliferation-independent role of NF2 (Merlin) in limiting biliary morphogenesis. Development 145, dev162123 (2018).

    PubMed  Google Scholar 

  102. Chebib, F. T., Sussman, C. R., Wang, X., Harris, P. C. & Torres, V. E. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat. Rev. Nephrol. 11, 451–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Spirli, C. et al. Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55, 856–868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Spirli, C. et al. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J. Hepatol. 66, 571–580 (2017).

    CAS  PubMed  Google Scholar 

  105. Wang, Y., Deng, X. & Gill, D. L. Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci. Signal. 3, pe42 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, Y. et al. STIM protein coupling in the activation of Orai channels. Proc. Natl Acad. Sci. USA 106, 7391–7396 (2009).

    CAS  PubMed  Google Scholar 

  107. Spirli, C. et al. Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with sorafenib. Hepatology 56, 2363–2374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Masyuk, T. V. et al. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58, 409–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Khan, S., Dennison, A. & Garcea, G. Medical therapy for polycystic liver disease. Ann. R. Coll. Surg. Engl. 98, 18–23 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. D’Agnolo, H. M. et al. Ursodeoxycholic acid in advanced polycystic liver disease: a phase 2 multicenter randomized controlled trial. J. Hepatol. 65, 601–607 (2016).

    PubMed  Google Scholar 

  111. Munoz-Garrido, P. et al. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J. Hepatol. 63, 952–961 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Brodsky, K. S., McWilliams, R. R., Amura, C. R., Barry, N. P. & Doctor, R. B. Liver cyst cytokines promote endothelial cell proliferation and development. Exp. Biol. Med. 234, 1155–1165 (2009).

    CAS  Google Scholar 

  113. Amura, C. R. et al. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/–) mice. Am. J. Physiol. Cell Physiol. 293, C419–C428 (2007).

    CAS  PubMed  Google Scholar 

  114. Spirli, C. et al. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 138, 360–371 (2010).

    CAS  PubMed  Google Scholar 

  115. Spirli, C. et al. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology 51, 1778–1788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Spirli, C. et al. Posttranslational regulation of polycystin-2 protein expression as a novel mechanism of cholangiocyte reaction and repair from biliary damage. Hepatology 62, 1828–1839 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Torrice, A. et al. Polycystins play a key role in the modulation of cholangiocyte proliferation. Dig. Liver Dis. 42, 377–385 (2010).

    CAS  PubMed  Google Scholar 

  118. Novo, E. et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am. J. Pathol. 170, 1942–1953 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yoshiji, H. et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 52, 1347–1354 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Brancatelli, G. et al. Fibropolycystic liver disease: CT and MR imaging findings. Radiographics 25, 659–670 (2005).

    PubMed  Google Scholar 

  121. Veigel, M. C. et al. Fibropolycystic liver disease in children. Pediatr. Radiol. 39, 317–327 (2009).

    PubMed  Google Scholar 

  122. Menezes, L. F. et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 66, 1345–1355 (2004).

    CAS  PubMed  Google Scholar 

  123. Zhang, M. Z. et al. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc. Natl Acad. Sci. USA 101, 2311–2316 (2004).

    CAS  PubMed  Google Scholar 

  124. Locatelli, L. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bergmann, C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front. Pediatr. 5, 221 (2017).

    PubMed  Google Scholar 

  127. Yonem, O. & Bayraktar, Y. Clinical characteristics of Caroli’s syndrome. World J. Gastroenterol. 13, 1934–1937 (2007).

    PubMed  PubMed Central  Google Scholar 

  128. Mai, W. et al. Inhibition of Pkhd1 impairs tubulomorphogenesis of cultured IMCD cells. Mol. Biol. Cell 16, 4398–4409 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Al-Bhalal, L. & Akhtar, M. Molecular basis of autosomal recessive polycystic kidney disease (ARPKD). Adv. Anat. Pathol. 15, 54–58 (2008).

    CAS  PubMed  Google Scholar 

  130. Kaimori, J. Y. et al. Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum. Mol. Genet. 16, 942–956 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cerwenka, H. Bile duct cyst in adults: interventional treatment, resection, or transplantation? World J. Gastroenterol. 19, 5207–5211 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Moslim, M. A., Gunasekaran, G., Vogt, D., Cruise, M. & Morris-Stiff, G. Surgical management of Caroli’s disease: single center experience and review of the literature. J. Gastrointest. Surg. 19, 2019–2027 (2015).

    PubMed  Google Scholar 

  133. Desmet, V. J. Ludwig symposium on biliary disorders—part I. Pathogenesis of ductal plate abnormalities. Mayo Clin. Proc. 73, 80–89 (1998).

    CAS  PubMed  Google Scholar 

  134. Masyuk, T. V. et al. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 165, 1719–1730 (2004).

    PubMed  PubMed Central  Google Scholar 

  135. Masyuk, T. V., Masyuk, A. I., Torres, V. E., Harris, P. C. & Larusso, N. F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132, 1104–1116 (2007).

    CAS  PubMed  Google Scholar 

  136. Kaffe, E. et al. beta-Catenin and interleukin-1beta-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67, 1903–1919 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Spirli, C. et al. Protein kinase A-dependent pSer(675)-beta-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 58, 1713–1723 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    CAS  PubMed  Google Scholar 

  139. Dunach, M., Del Valle-Perez, B. & Garcia de Herreros, A. p120-catenin in canonical Wnt signaling. Crit. Rev. Biochem. Mol. Biol. 52, 327–339 (2017).

    CAS  PubMed  Google Scholar 

  140. Strazzabosco, M. et al. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim. Biophys. Acta 1864, 1374–1379 (2018).

    CAS  Google Scholar 

  141. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A. & Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Masyuk, T. V. et al. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 142, 622–633 (2012).

    CAS  PubMed  Google Scholar 

  143. Yoshihara, D. et al. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. PLOS ONE 8, e81480 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Yoshihara, D. et al. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F465–F474 (2011).

    CAS  PubMed  Google Scholar 

  145. Chuang, Y. H. et al. Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J. Autoimmun. 25, 126–132 (2005).

    CAS  PubMed  Google Scholar 

  146. de Graaf, K. L. et al. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol. Commun. 2, 492–503 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Guicciardi, M. E. et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J. Hepatol. 69, 676–686 (2018).

    CAS  PubMed  Google Scholar 

  148. Yu, D., Cai, S. Y., Mennone, A., Vig, P. & Boyer, J. L. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. Liver Int. 38, 1128–1138 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Castellani, C. & Assael, B. M. Cystic fibrosis: a clinical view. Cell. Mol. Life Sci. 74, 129–140 (2017).

    CAS  PubMed  Google Scholar 

  150. O’Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).

    PubMed  Google Scholar 

  151. Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Cohn, J. A. et al. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105, 1857–1864 (1993).

    CAS  PubMed  Google Scholar 

  153. Kinnman, N. et al. Expression of cystic fibrosis transmembrane conductance regulator in liver tissue from patients with cystic fibrosis. Hepatology 32, 334–340 (2000).

    CAS  PubMed  Google Scholar 

  154. Ooi, C. Y. & Durie, P. R. Cystic fibrosis from the gastroenterologist’s perspective. Nat. Rev. Gastroenterol. Hepatol. 13, 175–185 (2016).

    CAS  PubMed  Google Scholar 

  155. Debray, D. et al. Cystic fibrosis-related liver disease: research challenges and future perspectives. J. Pediatr. Gastroenterol. Nutr. 65, 443–448 (2017).

    PubMed  Google Scholar 

  156. Rowland, M. et al. Outcome in patients with cystic fibrosis liver disease. J. Cyst. Fibros. 14, 120–126 (2015).

    PubMed  Google Scholar 

  157. Chryssostalis, A. et al. Liver disease in adult patients with cystic fibrosis: a frequent and independent prognostic factor associated with death or lung transplantation. J. Hepatol. 55, 1377–1382 (2011).

    PubMed  Google Scholar 

  158. Debray, D., Kelly, D., Houwen, R., Strandvik, B. & Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J. Cyst. Fibros. 10 (Suppl. 2), S29–S36 (2011).

    PubMed  Google Scholar 

  159. Beuers, U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 318–328 (2006).

    CAS  PubMed  Google Scholar 

  160. Lindblad, A., Glaumann, H. & Strandvik, B. A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis-associated liver disease. Hepatology 27, 166–174 (1998).

    CAS  PubMed  Google Scholar 

  161. Cheng, K., Ashby, D. & Smyth, R. L. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst. Rev. 9, CD000222 (2017).

    PubMed  Google Scholar 

  162. Fajac, I. & Wainwright, C. E. New treatments targeting the basic defects in cystic fibrosis. Presse Med. 46, e165–e175 (2017).

    PubMed  Google Scholar 

  163. Strug, L. J., Stephenson, A. L., Panjwani, N. & Harris, A. Recent advances in developing therapeutics for cystic fibrosis. Hum. Mol. Genet. 27, R173–R186 (2018).

    CAS  PubMed  Google Scholar 

  164. Fiorotto, R. et al. Src kinase inhibition reduces inflammatory and cytoskeletal changes in DeltaF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology 67, 972–988 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sampaziotis, F. et al. Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Staufer, K., Halilbasic, E., Trauner, M. & Kazemi-Shirazi, L. Cystic fibrosis related liver disease—another black box in hepatology. Int. J. Mol. Sci. 15, 13529–13549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Guggino, W. B. The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins. Proc. Am. Thorac. Soc. 1, 28–32 (2004).

    CAS  PubMed  Google Scholar 

  169. Li, C. & Naren, A. P. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr. Biol. 2, 161–177 (2010).

    Google Scholar 

  170. Fiorotto, R. et al. The cystic fibrosis transmembrane conductance regulator controls biliary epithelial inflammation and permeability by regulating Src tyrosine kinase activity. Hepatology 64, 2118–2134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Akira, S. Toll-like receptors and innate immunity. Adv. Immunol. 78, 1–56 (2001).

    CAS  PubMed  Google Scholar 

  172. Chattopadhyay, S. & Sen, G. C. Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev. 25, 533–541 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Medvedev, A. E. et al. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol. Chem. 282, 16042–16053 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Szabo, G., Dolganiuc, A. & Mandrekar, P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology 44, 287–298 (2006).

    CAS  PubMed  Google Scholar 

  175. Chen, X. M. et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J. Immunol. 175, 7447–7456 (2005).

    CAS  PubMed  Google Scholar 

  176. Fiorotto, R. et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-kappaB-mediated inflammatory response in mice. Gastroenterology 141, 1498–1508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Scirpo, R. et al. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-gamma limits NF-kappaB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62, 1551–1562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Schnabl, B. & Brenner, D. A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146, 1513–1524 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut-liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    CAS  PubMed  Google Scholar 

  180. De Lisle, R. C. & Borowitz, D. The cystic fibrosis intestine. Cold Spring Harb. Perspect. Med. 3, a009753 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. Flass, T. et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLOS ONE 10, e0116967 (2015).

    PubMed  PubMed Central  Google Scholar 

  182. Lynch, S. V. et al. Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes 4, 41–47 (2013).

    PubMed  PubMed Central  Google Scholar 

  183. Hirschfield, G. M., Karlsen, T. H., Lindor, K. D. & Adams, D. H. Primary sclerosing cholangitis. Lancet 382, 1587–1599 (2013).

    PubMed  Google Scholar 

  184. Ellinghaus, D. et al. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 58, 1074–1083 (2013).

    CAS  PubMed  Google Scholar 

  185. Folseraas, T. et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57, 366–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Katt, J. et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58, 1084–1093 (2013).

    CAS  PubMed  Google Scholar 

  187. Mueller, T. et al. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int. 31, 1574–1588 (2011).

    CAS  PubMed  Google Scholar 

  188. Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269–281 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (RO1DK096096 (M.S.), RO1DK-079005-07 (M.S.) and RO1DK101528 (C.S.)); by DK034989 Silvio O. Conte Digestive Diseases Research Core Center (M.S., C.S. and R.F.); by PSC Partners Seeking a Cure (M.S.); by a grant from Connecticut Innovations (16-RMA-YALE-26) (M.S.); by a grant from Cystic Fibrosis Foundation (FIOROT18GO) (R.F.); by the University of Padua, Progetti di Ricerca di Dipartimento (PRID) 2017 (L.F.); by the Spanish Ministry of Economy and Competitiveness and “Instituto de Salud Carlos III” grants PI14/00399, PI17/00022 and Ramon y Cajal Programme RYC-2015-17755 (M.J.P.) and by PI15/01132, PI18/01075 and Miguel Servet Programme CON14/00129 co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER) (J.M.B.); by CIBERehd, Spain (M.J.P. and J.M.B.); by IKERBASQUE, Basque foundation for Science, Spain (M.J.P. and J.M.B.); by “Diputación Foral de Gipuzkoa” DFG18/114 (M.J.P.), DFG15/010 and DFG16/004 (J.M.B.); by BIOEF (Basque Foundation for Innovation and Health Research): EiTB Maratoia BIO15/CA/016/BD (J.M.B.); by the Department of Health of the Basque Country (2015111100 (M.J.P.) and 2017111010 (J.M.B.)); and by AECC Scientific Foundation (J.M.B.).

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks S. Karpen and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Strazzabosco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabris, L., Fiorotto, R., Spirli, C. et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 16, 497–511 (2019). https://doi.org/10.1038/s41575-019-0156-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0156-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing