The synthetic toxin biliatresone causes biliary atresia in mice

Abstract

Exposure to environmental toxins may be responsible for biliary atresia. The focus of this study was to investigate the effect of biliatresone on the development of the hepatobiliary system in mice. We successfully synthesized biliatresone with a purity of 98% and confirmed its biliary toxicity. Exposure to high doses of biliatresone caused abortion or death in pregnant mice. Neonatal mice injected with biliatresone developed clinical signs of biliary obstruction, and dysplasia or the absence of extrahepatic biliary tract lumen, which confirmed the occurrence of biliary atresia. In the portal tract of biliary atresia mice, signs of infiltration of inflammatory cells and liver fibrosis were observed. The signature of extrahepatic biliary gene expression in these mice mainly involved the cell adhesion process, and hepatic RNA-seq was highly linked to transcriptional evidence of oxidative stress. When compared with the control group, hepatic glutathione levels were markedly reduced after biliatresone injection. Taken together, these data confirm that biliatresone causes severe developmental abnormalities of the hepatobiliary system in mice. Furthermore, decreased levels of glutathione may play a mechanistic role in the pathogenesis of liver fibrosis in biliatresone-induced experimental biliary atresia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biliatresone induced clinical manifestations of BA in neonatal mice.
Fig. 2: Biliatresone caused developmental abnormalities of the hepatobiliary system in mice.
Fig. 3: Reduced staining of cellular tubulin for CK19+ biliary epithelial cells of the gallbladder in biliatresone-induced BA mice.
Fig. 4: Activation of immune cells in the liver of biliatresone-induced BA models. Distribution of CD4+ and CD8+ T cells, and F4/80+ macrophages in the liver of biliatresone-induced BA models and controls at 14 days post injection.
Fig. 5: Extrahepatic biliary gene expression signature for the biliatresone-induced mouse model of BA at 14 days post injection.
Fig. 6: Hepatic gene expression signature for the biliatresone-induced mouse model of BA at 14 days post injection.

References

  1. 1.

    Davenport M. Biliary atresia: clinical aspects. Semin Pediatr Surg. 2012;21:175–84.

    Article  Google Scholar 

  2. 2.

    Garcia-Barceló MM, Yeung MY, Miao XP, Tang CS, Cheng G, So MT, et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mole Genet. 2010;19:2917–25.

    Article  Google Scholar 

  3. 3.

    Leyva-Vega M, Gerfen J, Thiel BD, Jurkiewicz D, Rand EB, Pawlowska J, et al. Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A. 2010;152A:886–95.

    CAS  Article  Google Scholar 

  4. 4.

    Rurarz M, Czubkowski P, Chrzanowska K, Cielecka-Kuszyk J, Marczak A, Kamińska D, et al. Biliary atresia in children with aberrations involving chromosome 11q. J Pediatr Gastroenterol Nutr. 2014;58:e26–e29.

    Article  Google Scholar 

  5. 5.

    Riepenhoff-Talty M, Schaekel K, Clark HF, Mueller W, Uhnoo I, Rossi T, et al. Group a rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res. 1993;33:394–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Mack C. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis. 2007;27:233–42.

    CAS  Article  Google Scholar 

  7. 7.

    Tyler KL, Sokol RJ, Oberhaus SM, Le M, Karrer FM, Narkewicz MR, et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology. 1998;27:1475–82.

    CAS  Article  Google Scholar 

  8. 8.

    Petersen C, Davenport M. Aetiology of biliary atresia: what is actually known? Orphanet J Rare Dis. 2013;8:128.

    Article  Google Scholar 

  9. 9.

    Petersen C. Biliary atresia: the animal models. Semin Pediatr Surg. 2012;21:185–91.

    Article  Google Scholar 

  10. 10.

    Rauschenfels S, Krassmann M, Al-Masri AN, Verhagen W, Leonhardt J, Kuebler JF, et al. Incidence of hepatotropic viruses in biliary atresia. Eur J Pediatr. 2009;168:469–76.

    Article  Google Scholar 

  11. 11.

    Mack CL, Feldman AG, Sokol RJ. Clues to the etiology of bile duct injury in biliary atresia. Semin Liver Dis. 2012;32:307–16.

    CAS  Article  Google Scholar 

  12. 12.

    Harper P, Plant JW, Ungers DB. Congenital biliary atresia and jaundice in lambs and calves. Aust Vet J. 1990;67:18–22.

    CAS  Article  Google Scholar 

  13. 13.

    Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X, et al. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med. 2015;7:286ra67.

    Article  Google Scholar 

  14. 14.

    Estrada MA, Zhao X, Lorent K, Kriegermeier A, Nagao SA, Berritt S, et al. Synthesis and structure–activity relationship study of biliatresone, a plant isoflavonoid that causes biliary atresia. ACS Med Chem Lett. 2018;9:61–4.

    CAS  Article  Google Scholar 

  15. 15.

    Dong R, Yang Y, Shen Z, Zheng C, Jin Z, Huang Y, et al. Forkhead box A3 attenuated the progression of fibrosis in a rat model of biliary atresia. Cell Death Dis. 2017;8:e2719.

    Article  Google Scholar 

  16. 16.

    Mack CL, Tucker RM, Sokol RJ, Karrer FM, Kotzin BL, Whitington PF, et al. Biliary atresia is associated with cd4+ th1 cell–mediated portal tract inflammation. Pediatr Res. 2004;56:79–87.

    CAS  Article  Google Scholar 

  17. 17.

    Bessho K, Mourya R, Shivakumar P, Walters S, Magee JC, Rao M, et al. Gene expression signature for biliary atresia and a role for Interleukin-8 in pathogenesis of experimental disease. Hepatology. 2014;60:211–23.

    CAS  Article  Google Scholar 

  18. 18.

    Zhao X, Lorent K, Benjamin JW, Marchione DM, Gillespie K, Waisbourd-Zinman O, et al. Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology. 2016;64:894–907.

    CAS  Article  Google Scholar 

  19. 19.

    Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip Rev Dev Biol. 2012;1:643–55.

    CAS  Article  Google Scholar 

  20. 20.

    Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner KH. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin invest. 2009;119:1537–45.

    CAS  Article  Google Scholar 

  21. 21.

    Lertudomphonwanit C, Mourya R, Fei L, Zhang Y, Gutta S, Yang L, et al. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med. 2017;9:eaan8462.

    Article  Google Scholar 

  22. 22.

    Jiang J, Wang J, Shen Z, Lu X, Chen G, Huang Y, et al. Serum mmp-7 in the diagnosis of biliary atresia. Pediatrics. 2019;144:e20190902.

    Article  Google Scholar 

  23. 23.

    Allen SR, Jafri M, Donnelly B, McNeal M, Witte D, Bezerra J, et al. Effect of rotavirus strain on the murine model of biliary atresia. J Virol. 2007;81:1671–9.

    CAS  Article  Google Scholar 

  24. 24.

    Glaser SS, Gaudio E, Miller T, Miller T, Alvaro D, Alpini G. Cholangiocyte proliferation and liver fibrosis. Expert Rev Mol Med. 2009;11:e7.

    Article  Google Scholar 

  25. 25.

    Lichtman SN, Sartor RB. Duct proliferation following biliary obstruction in the rat. Gastroenterology. 1991;100:1785–7.

    CAS  Article  Google Scholar 

  26. 26.

    Waisbourd-Zinman O, Koh H, Tsai S, Lavrut P-M, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880–93.

    CAS  Article  Google Scholar 

  27. 27.

    Luo ZH, Shivakumar P, Mourya R, Gutta S, Bezerra JA. Gene expression signatures associated with survival times of pediatric patients with biliary atresia identify potential therapeutic agents. Gastroenterology. 2019;157:1138–52.

    CAS  Article  Google Scholar 

  28. 28.

    Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015;1850:1607–21.

    CAS  Article  Google Scholar 

  29. 29.

    Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143–53.

    CAS  Article  Google Scholar 

  30. 30.

    Yang H, Ramani K, Xia M, Ko KS, Li TW, Oh P, et al. Dysregulation of glutathione synthesis during cholestasis in mice: Molecular mechanisms and therapeutic implications. Hepatology. 2009;49:1982–91.

    CAS  Article  Google Scholar 

  31. 31.

    Ramani K, Tomasi ML, Yang H, Ko K, Lu SC. Mechanism and significance of changes in glutamate-cysteine ligase expression during hepatic fibrogenesis. J Biol Chem. 2012;287:36341–55.

    CAS  Article  Google Scholar 

  32. 32.

    Yang H, Ko K, Xia M, Li TW, Oh P, Li J, et al. Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of GSH synthetic enzymes and contributes to cholestatic liver injury in mice. Hepatology. 2010;51:1291–301.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from Shanghai Key Disciplines (no. 2017ZZ02022), Shanghai Municipal Key Clinical Specialty (no. shslczdzk05703), National Natural Science Foundation of China (no. 81770519, no. 81771633, no. 81873545 and no. 81974059), The Science Foundation of Shanghai (no. 18411969100 and no. 19ZR1406600), and Children’s National Medical Center (no. EK1125180104, no. EKYY20180204, EK112520180211 and no. EK112520180310).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shan Zheng or Rui Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, J., Zhan, Y. et al. The synthetic toxin biliatresone causes biliary atresia in mice. Lab Invest 100, 1425–1435 (2020). https://doi.org/10.1038/s41374-020-0467-7

Download citation

Further reading

Search

Quick links