Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans

Abstract

Although some features underlying replication-origin activation in metazoan cells have been determined, little is known about their regulation during metazoan development. Using the nascent-strand purification method, here we identified replication origins throughout Caenorhabditis elegans embryonic development and found that the origin repertoire is thoroughly reorganized after gastrulation onset. During the pluripotent embryonic stages (pregastrula), potential cruciform structures and open chromatin are determining factors that establish replication origins. The observed enrichment of replication origins in transcription factor–binding sites and their presence in promoters of highly transcribed genes, particularly operons, suggest that transcriptional activity contributes to replication initiation before gastrulation. After the gastrula transition, when embryonic differentiation programs are set, new origins are selected at enhancers, close to CpG-island-like sequences, and at noncoding genes. Our findings suggest that origin selection coordinates replication initiation with transcriptional programs during metazoan development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of replication origins in C. elegans embryos.
Figure 2: Association of replication origins with IRs and operons.
Figure 3: Association of replication origins with chromatin marks and transcription features.
Figure 4: Association of replication origins with noncoding genes and enhancers.
Figure 5: Enhancer marks in postgastrula-specific origins.
Figure 6: Association of replication origins with CGIs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Fragkos, M., Ganier, O., Coulombe, P. & Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Rivera-Mulia, J.C. & Gilbert, D.M. Replicating large genomes: divide and conquer. Mol. Cell 62, 756–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cayrou, C. et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 25, 1873–1885 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacAlpine, H.K., Gordân, R., Powell, S.K., Hartemink, A.J. & MacAlpine, D.M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin, M.M. et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 21, 1822–1832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sequeira-Mendes, J. et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Iizuka, M., Matsui, T., Takisawa, H. & Smith, M.M. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26, 1098–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karnani, N., Taylor, C.M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tardat, M., Murr, R., Herceg, Z., Sardet, C. & Julien, E. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J. Cell Biol. 179, 1413–1426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, B., Su, T., Ferrari, R., Li, J.Y. & Kurdistani, S.K. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Epigenetics 9, 257–267 (2014).

    Article  PubMed  Google Scholar 

  11. Fu, H. et al. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 9, e1003542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costas, C. et al. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat. Struct. Mol. Biol. 18, 395–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stinchcomb, D.T., Struhl, K. & Davis, R.W. Isolation and characterisation of a yeast chromosomal replicator. Nature 282, 39–43 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Liachko, I. et al. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet. 10, e1004169 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cayrou, C. et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 21, 1438–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delgado, S., Gómez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426–2435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prioleau, M.N. CpG islands: starting blocks for replication and transcription. PLoS Genet. 5, e1000454 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cayrou, C. et al. New insights into replication origin characteristics in metazoans. Cell Cycle 11, 658–667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Valton, A.L. et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 33, 732–746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarkies, P., Reams, C., Simpson, L.J. & Sale, J.E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Bartholdy, B., Mukhopadhyay, R., Lajugie, J., Aladjem, M.I. & Bouhassira, E.E. Allele-specific analysis of DNA replication origins in mammalian cells. Nat. Commun. 6, 7051 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Comoglio, F. et al. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins. Cell Rep. 11, 821–834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, M.T., Bonneau, A.R. & Giraldez, A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blumenthal, A.B., Kriegstein, H.J. & Hogness, D.S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).

    Article  CAS  PubMed  Google Scholar 

  27. Hyrien, O., Maric, C. & Méchali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol. 19, 547–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shinomiya, T. & Ina, S. Analysis of chromosomal replicons in early embryos of Drosophila melanogaster by two-dimensional gel electrophoresis. Nucleic Acids Res. 19, 3935–3941 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robertson, S. & Lin, R. The Maternal-to-zygotic transition in C. elegans. Curr. Top. Dev. Biol. 113, 1–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Cayrou, C., Grégoire, D., Coulombe, P., Danis, E. & Méchali, M. Genome-scale identification of active DNA replication origins. Methods 57, 158–164 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hong, Y., Roy, R. & Ambros, V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development 125, 3585–3597 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Picard, F. et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet. 10, e1004282 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ikegami, K., Egelhofer, T.A., Strome, S. & Lieb, J.D. Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome Biol. 11, R120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emmons, S.W., Klass, M.R. & Hirsh, D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 76, 1333–1337 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mesner, L.D. & Hamlin, J.L. Isolation of restriction fragments containing origins of replication from complex genomes. Methods Mol. Biol. 521, 315–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blumenthal, T. & Gleason, K.S. Caenorhabditis elegans operons: form and function. Nat. Rev. Genet. 4, 112–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gerstein, M.B. et al. Comparative analysis of the transcriptome across distant species. Nature 512, 445–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Batista, P.J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, R.A. et al. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res. 23, 1339–1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Narasimhan, K. et al. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 4, e06967 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  44. Zhao, G., Chang, K.Y., Varley, K. & Stormo, G.D. Evidence for active maintenance of inverted repeat structures identified by a comparative genomic approach. PLoS One 2, e262 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Edgar, L.G. & McGhee, J.D. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53, 589–599 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Sonneville, R., Querenet, M., Craig, A., Gartner, A. & Blow, J.J. The dynamics of replication licensing in live Caenorhabditis elegans embryos. J. Cell Biol. 196, 233–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaykov, A. & Nurse, P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res. 25, 391–401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lombraña, R. et al. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J. 32, 2631–2644 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Eaton, M.L., Galani, K., Kang, S., Bell, S.P. & MacAlpine, D.M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaertner, B. & Zeitlinger, J. RNA polymerase II pausing during development. Development 141, 1179–1183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fusté, J.M. et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 37, 67–78 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nat. Cell Biol. 6, 721–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Salih, F., Salih, B., Kogan, S. & Trifonov, E.N. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element. J. Biomol. Struct. Dyn. 26, 9–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Greer, E.L. et al. DNA methylation on N6-adenine in C. elegans. Cell 161, 868–878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gbewonyo, K. et al. Large scale cultivation of the free living nematode Caenorhabditis elegans. Nat. Biotechnol. 12, 51–54 (1994).

    Article  CAS  Google Scholar 

  56. Mesner, L.D., Dijkwel, P.A. & Hamlin, J.L. Purification of restriction fragments containing replication intermediates from complex genomes for 2-D gel analysis. Methods Mol. Biol. 521, 121–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brewer, B.J. & Fangman, W.L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Howe, K.L. et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44, D774–D780 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fisher, R. Statistical Methods for Research Workers (Oliver and Boyd, 1938).

Download references

Acknowledgements

This work was supported by the European Research Council (FP7/2007-2013, grant agreement no. 233339), by the Fondation pour la Recherche Médicale (FRM) and the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082 to M.M.). M.R.-M. was supported by the Fondation ARC. We thank S. Galas (CRBM, Montpellier) for advice regarding C. elegans development and for providing the strain used in this study, as well as J. Bacal for help with the 2D gel technique, D. van Essen for support in bioinformatics, and E. Andermarcher and J. Hutchins for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M. proposed the project and supervised its execution. C.C. supervised the project and its experimental design. C.G. and M.R.-M. designed the bioreactor conditions for C. elegans synchronous growth. M.R.-M. and C.C. performed the large-scale embryo preparation. M.R.-M. performed nascent-strand purification from the embryos, embryo imaging, fluorescence-activated cell-sorting analysis, and bubble-trap and 2D gel experiments. E.B., N.P., H.S., C.C. and M.R.-M. performed the computational analyses. M.R.-M., C.C. and M.M. prepared the manuscript.

Corresponding authors

Correspondence to Hervé Seitz, Christelle Cayrou or Marcel Méchali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Flow cytometry analysis of the mixed and pregastrula embryo populations.

(a) Nascent strand (NS) isolation schematic. 0.3-2 kb NS were isolated from total genomic DNA by denaturation and sucrose gradient centrifugation. NS enriched by lambda-exonuclease digestion were hybridized against total genomic DNA on high-density tiling arrays (see Methods for details). (b) Left panels show the scatter distribution (forward vs. side) of the analyzed events (upper panel, mixed C. elegans embryos; lower panel, pre-gastrula embryos). Middle panels show the cell cycle distribution of the events of the lefts panels. For the mixed embryo population, two windows are shown, large (1) and small (2) cell size, to confirm that both populations contain cells in S-phase. The pre-gastrula embryo middle panels represent the whole scatter distribution. PI, propidium iodide. The right panels show representative images of each embryo population analyzed by cell sorting. Embryos were labeled with EdU (green) and stained with DAPI (blue) (merged images on the right panels).

Supplementary Figure 2 Replicates and validation of C. elegans replication origins.

(a) Correlation of the nascent strand microarray data in two of the three replicates for the pre-gastrula and mixed embryo populations. (b) Heatmap representing a significant set of probes of the three replicates (R1-R3) of nascent strand microarray data for pre-gastrula (left) and mixed embryo (right) origins. Colors indicate the intensity of the microarray probe, from low (green) to red (high). (c) Alignment of three independent nascent strand microarray experiments (R1-R3) along C. elegans chromosome 1. The bottom panels show representative profiles of origins in the chromosome arms and center. The background signal from the L1-arrested larval sample was subtracted from each replicate (-L1). (d) Quantitative PCR validation of C. elegans replication origins detected by microarray analysis of the NS purification (n=3), together with the corresponding controls. The graph shows the microarray normalized log2-ratio data (samples compared with genomic DNA) as well as the position of inverted repeats.

Source data

Supplementary Figure 3 Association of inverted repeats and operons with C. elegans replication origins.

(a) Boxplots showing the percentage of association of inverted repeats (IRs) with pre-gastrula and post-gastrula-specific origins (top graphs) and the reverse correlation (bottom panels), compared with random expectation, in chromosome arms and center (left and right panels respectively). *, P<10-15 (according to the distribution function of the normal distribution); n.s., non-significant difference with random. (b) Boxplots showing the number of pre-gastrula (green) and post-gastrula-specific (orange) origin summits in operons, compared with random data. *, P<10-20 (according to the distribution function of the normal distribution). Data are shown as mean ± s.d. (c) Distribution (%) of pre-gastrula (green) and post-gastrula-specific (orange) replication origins around operon transcription start sites (TSS) (mean percentage ± standard error) in chromosome arms and center.

Source data

Supplementary Figure 4 C. elegans pregastrula origins are localized in open chromatin in transcriptional active regions.

(a) Distribution of the ChIP-Chip signals for the HTZ-1 histone variant and RNA pol II around ±2 kb from pre-gastrula replication origin summits (solid green line) or the centers of random regions (gray line; mean ± 2x s.d. for HTZ-1 and mean ± s.d. for RNA pol II) in chromosome arms (top panels) and centers (lower panels). Only autosomal chromosome were taken in account for HTZ-1 histone variant (b) Numbers of gap regions (left panels) or LEM-2 subdomains (right panels) inside chromosome arms that are overlapped by pre-gastrula origins versus random regions (number ± s.d.). The reverse correlations are also shown (bottom panels). *, P<0.05 (two-sided t-tests); n.s., non-significant differences with random expectation. (c) Mean distributions of pre-gastrula (green) and post-gastrula-specific (orange) origins in each chromosome (origin density/200 kb). Dashed black lines indicate the mean level of gene transcript (dcpm) at each chromosome. (d) Percentage of HOT regions associated with pre- (green) and post-gastrula-specific (orange) replication origins in chromosome arms and centers. * indicates P<10-15 (Chi-squared test); n.s., non-significant difference with random (mean ± s.d.). (e) Replication origin efficiency (total coverage of probes intensity; mean ± s.d.) relative to some genomic features. *, P<10-8; **, P<10-12 (two-sided t-tests) compared with the efficiency in all replication origins.

Source data

Supplementary Figure 5 Distribution of C. elegans origins relative to genes and promoters.

(a) Percentage of pre-gastrula (green) and post-gastrula-specific (orange) replication origins around non-coding TSSs (±3000 bp) in the chromosome arms (left panel) or centers (right panel). Mean random profiles are represented by a full line (± standard error in dashed lines) in a lighter color than the one used for the real data. (b) Box plots showing the percentage of pre-gastrula (green) and post-gastrula-specific (orange) origin summits found in all non-coding gene promoters (total promoters) as well as in non-coding gene promoters in chromosome centers, left and right arms. *, P<10-20 (according to the distribution function of the normal distribution); n.s., non-significant difference with random expectation (mean ± s.d.). (c) ChIP signals for histone H3K4me3 and RNA pol II around ±2 kb from the TSS of non-coding genes overlapped (left panel) or not (right panel) by post-gastrula-specific origins. The y-axis represents the average ChIP signal per 100 bp.

Source data

Supplementary Figure 6 Sequence motifs associated with replication origins.

Scanning for the occurrence of GCTAAAA (a), [AC][GC]GC[CG]C (b) and CG[AC][GC]GCGC (c) motifs in 1-kb regions on both sides of origin summits. The x-axis indicates the position relative to the origin summit, the y-axis the percentage of pre-gastrula origins (green line), post-gastrula-specific origins (orange line) or 100 randoms (gray lines) with at least one occurrence per 100-bp window. Both Watson (sense) and Crick (antisense) chromosomal strands were considered. (d) Box plots showing the total percentage of pre-gastrula (green) and post-gastrula-specific (orange) origin summits overlapping with CGI-like sequences (for origins and random data) (mean ± s.d.) and in (e) chromosome arms and center, separately. *, P<10-8 (according to the distribution function of the normal distribution). (f) Results of bubble trap and 2D gel electrophoresis analysis for a region containing a post-gastrula-specific origin with a CGI-like (positive region; brown box; left panels) and a region without origin and CGI-like (negative region; right panel, same negative region already shown in Figure 2C). The raw data of these regions are on top (combination of three NS microarray replicates), the qPCR validation in the middle, and the 2D gels at the bottom. The black box indicates the position of the probe used for hybridization and the thin pink lines, the Cla1 sites. The results at the bottom are shown for both regions, comparing a mixed embryo sample and a negative control (L1-arrested larval sample). The arrow indicates the position of the signal representing the replication origin.

Source data

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 1957 kb)

Supplementary Table 3

Significant motifs found in pre- and post-gastrula specific replication origins. Significant n-mers found in post-gastrula specific replication origins. TFs specific n-mer corresponding to the pre-gastrula origin motifs. (XLSX 17 kb)

Supplementary Data Set 1

Uncropped 2D gel (PDF 9837 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Martínez, M., Pinzón, N., Ghommidh, C. et al. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nat Struct Mol Biol 24, 290–299 (2017). https://doi.org/10.1038/nsmb.3363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing