Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of bone mass and susceptibility to bone diseases

A Corrigendum to this article was published on 22 July 2016

This article has been updated

Key Points

  • The genetics of osteoporosis is a rapidly evolving field, which has been greatly expanded by increased understanding of the human genome

  • The list of identified loci associated with osteoporosis phenotypes is growing rapidly, and still incomplete

  • Studies of monogenic bone diseases and genome-wide association studies of complex traits have identified dozens of genes and loci that influence skeletal traits

  • Further knowledge of the genetics of osteoporosis will emerge from mining large databases containing a wealth of genomic information

  • Many candidate osteoporosis-related loci require detailed functional follow-up to understand the underlying biological mechanisms determining trait variation

  • Despite this wealth of new genetic information, its application to the clinical management of osteoporosis remains in its infancy

Abstract

Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene–environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt–β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between single-gene disorders and complex traits.
Figure 2: The most important genes linked to BMD variation.
Figure 3: Genetic studies have identified a large number of candidate osteoporosis genes.

Similar content being viewed by others

Change history

  • 22 July 2016

    In Table 1 of this Review, the protein names and protein functions for TNFSF11 and TNFRSF11A were incorrectly associated. The entries have been corrected and the protein function for TNFRSF11A has been clarified in the online version of the article. The authors apologize for this error.

References

  1. Smith, D. M. et al. Genetic factors in determining bone mass. J. Clin. Invest. 52, 2800–2808 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pocock, N. A. et al. Genetic determinants of bone mass in adults. A twin study. J. Clin. Invest. 80, 706–710 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hernandez-de Sosa, N. et al. Heritability of bone mineral density in a multivariate family-based study. Calcif. Tissue Int. 94, 590–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Morrison, N. A., Yeoman, R., Kelly, P. J. & Eisman, J. A. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc. Natl Acad. Sci. USA 89, 6665–6669 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrison, N. A. et al. Prediction of bone density from vitamin D receptor alleles. Nature 367, 284–287 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Riggs, L. B. et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J. Bone Miner. Res. 10, 991–996 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001).

  8. Ioannidis, J. P. et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292, 2105–2114 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Uitterlinden, A. G. et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Intern. Med. 145, 255–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ralston, S. H. et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med. 3, e90 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langdahl, B. L. et al. Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone 42, 969–981 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. van Meurs, J. B. et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299, 1277–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie, W., Ji, L., Zhao, T. & Gao, P. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray. Med. Sci. Monit. 21, 1333–1344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, D. J. & Ackert-Bicknell, C. L. Genetic regulation of bone strength: a review of animal model studies. BoneKEy Rep. 4, 714 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu, S. et al. Genome-wide approaches for identifying genetic risk factors for osteoporosis. Genome Med. 5, 44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burgers, T. A. & Williams, B. O. Regulation of Wnt/β-catenin signaling within and from osteocytes. Bone 54, 244–249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Staehling-Hampton, K. et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am. J. Med. Genet. 110, 144–152 (2002).

    Article  PubMed  Google Scholar 

  26. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Meurs, J. J. et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299, 1277–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nat. Genet. 41, 15–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Keupp, K. et al. Mutations in WNT1 cause different forms of bone fragility. Am. J. Hum. Genet. 92, 565–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laine, C. M. et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N. Engl. J. Med. 368, 1809–1816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pyott Shawna, M. et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am. J. Hum. Genet. 92, 590–597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fahiminiya, S. et al. Mutations in WNT1 are a cause of osteogenesis imperfecta. J. Med. Genet. 50, 345–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Palomo, T. et al. Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations. Bone 67, 63–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Joeng, K. S. et al. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum. Mol. Genet. 23, 4035–4042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, H.-F. et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 8, e1002745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moayyeri, A. et al. Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum. Mol. Genet. 23, 3054–3068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medina-Gomez, C. et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 8, e1002718 (2012).

  39. Kemp, J. P. et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 10, e1004423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koller, D. L. et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J. Bone Miner. Res. 28, 547–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. García-Ibarbia, C. et al. Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos. Int. 24, 2449–2454 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Moverare-Skrtic, S. et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 20, 1279–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, M. L. LRP5 and bone mass regulation: where are we now? BoneKEy Rep. 1, 1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Dijk, F. S. et al. PLS3 mutations in X-linked osteoporosis with fractures. N. Engl. J. Med. 369, 1529–1536 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Laine, C. M. et al. A novel splice mutation in PLS3 causes X-linked early onset low-turnover osteoporosis. J. Bone Miner. Res. 30, 510–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Munns, C. F. et al. Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am. J. Hum. Genet. 96, 971–978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutsch, F. et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am. J. Hum. Genet.96, 275–282 (2015).

    CAS  Google Scholar 

  48. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet.96, 266–274 (2015).

    CAS  Google Scholar 

  49. Kiel, D. P. et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S14 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Timpson, N. J. et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum. Mol. Genet. 18, 1510–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Kung, A. W. et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am. J. Hum. Genet. 86, 229–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Farber, C. R. Systems-level analysis of genome-wide association data. G3 (Bethesda) 3, 119–129 (2013).

    Article  CAS  Google Scholar 

  58. He, H. et al. Integrative analysis of GWASs, human protein interaction, and gene expression identified gene modules associated with BMDs. J. Clin. Endocrinol. Metab. 99, E2392–E2399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kryukov, G. V., Shpunt, A., Stamatoyannopoulos, J. A. & Sunyaev, S. R. Power of deep, all-exon resequencing for discovery of human trait genes. Proc. Natl Acad. Sci. USA 106, 3871–3876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Auer, P. L. & Lettre, G. Rare variant association studies: considerations, challenges and opportunities. Genome Med. 7, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Styrkarsdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497, 517–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Zheng, H. et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526, 112–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, L. et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum. Mol. Genet. 23, 1923–1933 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kiel, D. et al. Targeted sequencing of previously identified loci associated with BMD [abstract #SU0158]. J. Bone Miner. Res. 27 (Suppl. 1), S261 (2012).

    Google Scholar 

  66. Johnsson, M., Jonsson, K. B., Andersson, L., Jensen, P. & Wright, D. Genetic regulation of bone metabolism in the chicken: similarities and differences to mammalian systems. PLoS Genet. 11, e1005250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ackert-Bicknell, C. L. et al. Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J. Bone Miner. Res. 25, 1808–1820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wein, M. N. et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J. Bone Miner. Res. 30, 400–411 (2015).

    Article  PubMed  Google Scholar 

  69. Johnson, M. L. Unlocking the sost gene. J. Bone Miner. Res. 30, 397–399 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Kramer, I., Baertschi, S., Halleux, C., Keller, H. & Kneissel, M. Mef2c deletion in osteocytes results in increased bone mass. J. Bone Miner. Res. 27, 360–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, M. E. et al. A ChIP-seq-defined genome-wide map of MEF2C binding reveals inflammatory pathways associated with its role in bone density determination. Calcif. Tissue Int. 94, 396–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Kenney-Hunt, J. P. et al. Quantitative trait loci for body size components in mice. Mamm. Genome 17, 526–537 (2006).

    Article  PubMed  Google Scholar 

  73. Marchini, M. et al. Impacts of genetic correlation on the independent evolution of body mass and skeletal size in mammals. BMC Evol. Biol. 14, 258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lagerholm, S. et al. Identification of candidate gene regions in the rat by co-localization of QTLs for bone density, size, structure and strength. PLoS ONE 6, e22462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nikolskiy, I. et al. Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides. BMC Genomics 16, 415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Austin, C. P. et al. The Knockout Mouse Project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. The International Mouse Knockout Consortium. A mouse for all reasons. Cell 128, 9–13 (2007).

  79. Ringwald, M. et al. The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res. 39, D849–D855 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. de Vrieze, E. et al. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos. Int. 25, 567–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Mackay, E. W., Apschner, A. & Schulte-Merker, S. A bone to pick with zebrafish. BoneKEy Rep. 2, 445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gebruers, E. et al. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling. PLoS ONE 8, e83293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Vrieze, E., Zethof, J., Schulte-Merker, S., Flik, G. & Metz, J. R. Identification of novel osteogenic compounds by an ex-vivo sp7:luciferase zebrafish scale assay. Bone 74, 106–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, L. C. et al. A genome-wide association study of limb bone length using a Large White × Minzhu intercross population. Genet. Sel. Evol. 46, 56 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhu, J. et al. A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits. BMC Genomics 16, 88 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Saatchi, M., Schnabel, R. D., Taylor, J. F. & Garrick, D. J. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics 15, 442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sivakumaran, S. et al. Abundant pleiotropy in human complex diseases and traits. Am. J. Hum. Genet. 89, 607–618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Y. et al. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genet. Epidemiol. 39, 259–275 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Albagha, O. M. et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat. Genet. 43, 685–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Karasik, D. et al. Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study. J. Bone Miner. Res. 25, 1555–1563 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smoller, J. W. et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article  CAS  Google Scholar 

  93. Sun, X. et al. Genetic and environmental correlations between bone geometric parameters and body compositions. Calcif. Tissue Int. 79, 43–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Moseley, K. F., Dobrosielski, D. A., Stewart, K. J., Sellmeyer, D. E. & Jan De Beur, S. M. Lean mass predicts hip geometry in men and women with non-insulin-requiring type 2 diabetes mellitus. J. Clin.Densitom. 14, 332–339 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Deng, F. Y. et al. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J. Bone Miner. Res. 22, 808–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Karasik, D. et al. Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J. Bone Miner. Res. 24, 710–718 (2009).

    Article  PubMed  Google Scholar 

  97. Gupta, M. et al. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations. J. Bone Miner. Res. 26, 1261–1271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, L. et al. Bivariate genome-wide association analyses of femoral neck bone geometry and appendicular lean mass. PLoS ONE 6, e27325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, Y. F. et al. Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum. Genet. 132, 189–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Brotto, M. & Johnson, M. Endocrine crosstalk between muscle and bone. Curr. Osteoporos. Rep. 12, 135–141 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kernstock, S. et al. Lysine methylation of VCP by a member of a novel human protein methyltransferase family. Nat. Commun. 3, 1038 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Cloutier, P., Lavallee-Adam, M., Faubert, D., Blanchette, M. & Coulombe, B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 9, e1003210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Karasik, D. How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging. Age (Dordr.) 33, 49–62 (2011).

    Article  Google Scholar 

  104. Cauley, J. A. et al. Successful skeletal aging: a marker of low fracture risk and longevity. The Study of Osteoporotic Fractures (SOF). J. Bone Miner. Res. 24, 134–143 (2009).

    Article  PubMed  Google Scholar 

  105. Brennan, T. A. et al. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis. Dis. Model. Mech. 7, 583–592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Gilson, H. et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Bialek, P. et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone 60, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Mendias, C. L. et al. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. Aging Cell 14, 704–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tagliaferri, C., Wittrant, Y., Davicco, M.-J., Walrand, S. & Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 21, 55–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Karasik, D. & Zinder, M. The genetic pleiotropy of musculoskeletal aging. Front. Physiol. 3, 303 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hartley, S. W., Monti, S., Liu, C.-T., Steinberg, M. H. & Sebastiani, P. Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction. Front. Genet. 3, 176 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cushman, S. A. Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front. Genet. 5, 197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Savage, N. Bioinformatics: big data versus the big C. Nature 509, S66–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Bjornerem, A. et al. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study. J. Bone Miner. Res. 30, 519–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Drissi, H., Paglia, D. N., Alaee, F. & Yoshida, R. Constructing the toolbox: patient-specific genetic factors of altered fracture healing. Genes Dis. 1, 140–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fenger, M. Next generation genetics. Front. Genet. 5, 322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Richards, J. B., Zheng, H. F. & Spector, T. D. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Clark, G. R. & Duncan, E. L. The genetics of osteoporosis. Br. Med. Bull. 113, 73–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Eriksson, J. et al. Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J. Bone Miner. Res. 30, 184–194 (2015).

    Article  PubMed  Google Scholar 

  122. Tran, B. H., Center, J. R. & Nguyen, N. T. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed Rosen, C. J.) 376–388 (Wiley-Blackwell, 2013).

    Book  Google Scholar 

  123. Collins, F. S. et al. New goals for the U. S. Human Genome Project: 1998–2003. Science 282, 682–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Hsu, Y. H. et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet. 6, e1000977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hsu, Y. H. & Kiel, D. P. Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J. Clin. Endocrinol. Metab. 97, E1958–E1977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xiao, S. M. et al. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum. Mol. Genet. 21, 1648–1657 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Sims, A. M. et al. Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J. Bone Miner. Res. 23, 499–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, J. et al. Exome sequencing reveals a novel PTHLH mutation in a Chinese pedigree with brachydactyly type E and short stature. Clin. Chim. Acta 446, 9–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Chesi, A. et al. A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum. Mol. Genet. 24, 5053–5059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garcia-Ibarbia, C. et al. Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 532, 165–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Guo, Y. et al. IL21R and PTH may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J. Bone Miner. Res. 25, 1042–1048 (2010).

    CAS  PubMed  Google Scholar 

  132. Sobacchi, C., Schulz, A., Coxon, F. P., Villa, A. & Helfrich, M. H. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9, 522–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Toka, H. R. New functional aspects of the extracellular calcium-sensing receptor. Curr. Opin. Nephrol. Hypertens. 23, 352–360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Masi, L. et al. Taxonomy of rare genetic metabolic bone disorders. Osteoporos. Int. 26, 2529–2558 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Jin, W. et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J. Clin. Invest. 118, 1858–1866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Richards, J. B. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 151, 528–537 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Paternoster, L. et al. Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet. 9, e1003247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Jaeger, M. et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J. Clin. Microbiol. Infect. Dis. 34, 963–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kung, A. W. C. et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am. J. Hum. Genet. 86, 229–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zanotti, S. & Canalis, E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif. Tissue Int. 90, 69–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Li, L. et al. JAG1 mutation spectrum and origin in chinese children with clinical features of alagille syndrome. PLoS ONE 10, e0130355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xiong, L. et al. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Proc. Natl Acad. Sci. USA 112, 3487–3492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leupin, O. et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J. Biol. Chem. 286, 19489–19500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zheng, H. F. et al. Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm. J. Med. Genet. 50, 473–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Fahiminiya, S. et al. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J. Bone Miner. Res. 29, 1805–1814 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Nissenson, R. A. & Juppner, H. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed Rosen, C. J.) 208–214 (Wiley-Blackwell,2013).

    Book  Google Scholar 

  149. Wysolmerski, J. J. Parathyroid Hormone-Related Protein (Wiley-Blackwell, 2013).

    Book  Google Scholar 

  150. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–7671 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, Y. J., Zhang, L., Papasian, C. J. & Deng, H. W. Genome-wide association studies for osteoporosis: a 2013 update. J. Bone Metab. 21, 99–116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vannahme, C. et al. Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J. Biol. Chem. 277, 37977–37986 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Lapunzina, P. et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am. J. Hum. Genet. 87, 110–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu, Y. F., Matsuo, N., Sumiyoshi, H. & Yoshioka, H. Sp7/Osterix is involved in the up-regulation of the mouse pro-α1(V) collagen gene (Col5a1) in osteoblastic cells. Matrix Biol. 29, 701–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Lefebvre, V. & de Crombrugghe, B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 16, 529–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Ralston, S. H. & Albagha, O. M. Genetics of Paget's disease of bone. Curr. Osteoporos. Rep. 12, 263–271 (2014).

    Article  PubMed  Google Scholar 

  159. Sobacchi, C. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Yu, B. et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB. Nat. Med. 20, 1009–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kou, I. et al. Common variants in a novel gene, FONG on chromosome 2q33.1 confer risk of osteoporosis in Japanese. PLoS ONE 6, e19641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Niu, T. et al. Identification of IDUA and WNT16 phosphorylation-related non-synonymous polymorphisms for bone mineral density in meta-analyses of genome-wide association studies. J. Bone Miner. Res. 31, 358–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Cheung, C. L., Chan, V. & Kung, A. W. A differential association of ALOX15 polymorphisms with bone mineral density in pre- and post-menopausal women. Hum. Hered. 65, 1–8 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

F.R.'s research is supported by a grant from the Netherlands Organization for Scientific Research (NWO-ZonMw VIDI 016.136.367). D.K. is supported by ERC FP7-PEOPLE-2012-Marie Curie Career Integration Grants and Israel Science Foundation (No. 1283/14). M.L.J.'s work is supported by a grant from the NIH (NIA P01 AG039355). The original artwork for the skeleton drawing in Fig. 2 is from a collection of anatomical drawings by the late Cecil G. Johnson (1920–2004), uncle of M.L.J.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contribution to discussion of content, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Mark L. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Osteoporosis-related loci discovered by GWAS, for BMD, bone ultrasound, and fracture, with the nearest candidate genes. (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasik, D., Rivadeneira, F. & Johnson, M. The genetics of bone mass and susceptibility to bone diseases. Nat Rev Rheumatol 12, 323–334 (2016). https://doi.org/10.1038/nrrheum.2016.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing