Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A road map for understanding molecular and genetic determinants of osteoporosis

Abstract

Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in ‘systems genetics and genomics’. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.

Key points

  • Osteoporosis, which is the most common bone disorder worldwide, and its related traits (low bone mineral density and osteoporotic fracture) are highly heritable.

  • Multiple omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have been applied to identify the molecular factors contributing to the pathogenesis of osteoporosis.

  • Building upon the success in single-omics discovery research, studies have integrated data from different omics levels to better elucidate the molecular and functional mechanisms for osteoporosis.

  • Integration of omics approaches can provide a holistic road map to comprehensively illuminate the complex pathogenesis of osteoporosis and fulfil the potential of personalized disease risk prediction, intervention and treatment as well as drug development or re-purposing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of osteoporosis in populations of age 50 years and older in selected countries.
Fig. 2: Integrating multi-omics data to elucidate the molecular mechanisms of osteoporosis.
Fig. 3: Differentiation process of osteoblasts and osteoclasts.

Similar content being viewed by others

References

  1. Kanis, J. A. Diagnosis of osteoporosis. Osteoporos. Int. 7, S108–S116 (1997).

    Article  PubMed  Google Scholar 

  2. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis : report of a WHO study group [meeting held in Rome from 22 to 25 June 1992] (WHO, 1994).

  3. Johnell, O. et al. Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005).

    Article  PubMed  Google Scholar 

  4. Peacock, M., Turner, C. H., Econs, M. J. & Foroud, T. Genetics of osteoporosis. Endocr. Rev. 23, 303–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Deng, H. W. et al. Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet. Epidemiol. 22, 12–25 (2002).

    Article  PubMed  Google Scholar 

  6. Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 51, 258–266 (2019). As the largest GWAS of BMD until 2019, this paper performed analyses in over 426,000 individuals from the UK Biobank and identified 518 loci associated with BMD, 301 of which were novel.

    Article  CAS  PubMed  Google Scholar 

  7. Sun, Y. V. & Hu, Y. J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 93, 147–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Raisz, L. G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. Udagawa, N. et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl Acad. Sci. USA 87, 7260–7264 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Knothe Tate, M. L., Adamson, J. R., Tami, A. E. & Bauer, T. W. The osteocyte. Int. J. Biochem. Cell Biol. 36, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell and more. Endocr. Rev. 34, 658–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sims, N. A. & Walsh, N. C. Intercellular cross-talk among bone cells: new factors and pathways. Curr. Osteoporos. Rep. 10, 109–117 (2012).

    Article  PubMed  Google Scholar 

  18. Sabik, O. L. & Farber, C. R. Using GWAS to identify novel therapeutic targets for osteoporosis. Transl. Res. 181, 15–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Richards, J. B., Zheng, H. F. & Spector, T. D. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. J., Zhang, L., Papasian, C. J. & Deng, H. W. Genome-wide association studies for osteoporosis: a 2013 update. J. Bone Metab. 21, 99–116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nat. Genet. 41, 15–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Xiong, D. H. et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am. J. Hum. Genet. 84, 388–398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, H. F. et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526, 112–117 (2015). By using whole-genome sequencing, this study identified a low-frequency non-coding variant near the novel locus (EN1) associated with lumbar spine BMD and the risk of fracture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richards, J. B. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 151, 528–537 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moayyeri, A. et al. Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum. Mol. Genet. 23, 3054–3068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medina-Gomez, C. et al. Life-course genome-wide association study meta-analysis of total body bmd and assessment of age-specific effects. Am. J. Hum. Genet. 102, 88–102 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parikka, V. et al. Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor-α-deficient male and female mice. Eur. J. Endocrinol. 152, 301–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Maatta, J. A. et al. Inactivation of estrogen receptor α in bone-forming cells induces bone loss in female mice. FASEB J. 27, 478–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Crockett, J. C., Rogers, M. J., Coxon, F. P., Hocking, L. J. & Helfrich, M. H. Bone remodelling at a glance. J. Cell Sci. 124, 991–998 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

    Article  PubMed  Google Scholar 

  35. Kemp, J. P. et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat. Genet. 49, 1468–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riggs, B. L., Khosla, S. & Melton, L. J. 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13, 763–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Koller, D. L. et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J. Bone Miner. Res. 28, 547–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, C. et al. Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J. Bone Miner. Res. 27, 2582–2591 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, H. F. et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLOS Genet. 8, e1002745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, L. et al. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Proc. Natl Acad. Sci. USA 112, 3487–3492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaprio, J. Twins and the mystery of missing heritability: the contribution of gene-environment interactions. J. Intern. Med. 272, 440–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, T. L. et al. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am. J. Hum. Genet. 83, 663–674 (2008). The first study to investigate the contribution of copy number variation to osteoporosis identified a deletion variant of UGT2B17 associated with osteoporotic fracture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, W. et al. Gene-based GWAS analysis for consecutive studies of GEFOS. Osteoporos. Int. 29, 2645–2658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, L. S. et al. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J. Bone Miner. Res. 25, 1572–1580 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang, H., Chanda, P., Alonso, A., Bader, J. S. & Arking, D. E. Gene-based tests of association. PLOS Genet. 7, e1002177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. Z. et al. Powerful bivariate genome-wide association analyses suggest the Sox6 gene influencing both obesity and osteoporosis phenotypes in males. PLOS ONE 4, e6827 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Medina-Gomez, C. et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat. Commun. 8, 121 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Pei, Y. F. et al. Joint association analysis identified 18 new loci for bone mineral density. J. Bone Miner. Res. 34, 1086–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Greenbaum, J. et al. Increased detection of genetic loci associated with risk predictors of osteoporotic fracture using a pleiotropic cFDR method. Bone 99, 62–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calabrese, G. M. et al. Integrating GWAS and co-expression network data identifies bone mineral density genes SPTBN1 and MARK3 and an osteoblast functional module. Cell Syst. 4, 46–59.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, S. H. et al. Prediction of future osteoporotic fracture occurrence by genetic profiling: a 6-year follow-up observational study. J. Clin. Endocrinol. Metab. 101, 1215–1224 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Ho-Le, T. P., Center, J. R., Eisman, J. A., Nguyen, H. T. & Nguyen, T. V. Prediction of bone mineral density and fragility fracture by genetic profiling. J. Bone Miner. Res. 32, 285–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, S. K. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLOS ONE 13, e0200785 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Xia, W. F. et al. Swedish mutant APP suppresses osteoblast differentiation and causes osteoporotic deficit, which are ameliorated by N-acetyl-L-cysteine. J. Bone Miner. Res. 28, 2122–2135 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Cornelius, C. et al. Osteoporosis and Alzheimer pathology: role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front. Pharmacol. 5, 120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sato, T. et al. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase. Heliyon 1, e00013 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karasik, D. et al. Heritability and genetic correlations for bone microarchitecture: the framingham study families. J. Bone Miner. Res. 32, 106–114 (2017).

    Article  PubMed  Google Scholar 

  61. Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362, k3225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nielson, C. M. et al. Novel genetic variants associated with increased vertebral volumetric BMD, reduced vertebral fracture risk, and increased expression of SLC1A3 and EPHB2. J. Bone Miner. Res. 31, 2085–2097 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Guo, Y. et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLOS Genet. 6, e1000806 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Greene, C. S., Penrod, N. M., Williams, S. M. & Moore, J. H. Failure to replicate a genetic association may provide important clues about genetic architecture. PLOS ONE 4, e5639 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kraft, P., Zeggini, E. & Ioannidis, J. P. Replication in genome-wide association studies. Stat. Sci. 24, 561–573 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, Y. J., Zhang, L., Pei, Y. F., Papasian, C. J. & Deng, H. W. On genome-wide association studies and their meta-analyses: lessons learned from osteoporosis studies. J. Clin. Endocrinol. Metab. 98, E1278–E1282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLOS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Greenbaum, J. & Deng, H. W. A statistical approach to fine mapping for the identification of potential causal variants related to bone mineral density. J. Bone Miner. Res. 32, 1651–1658 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, Y. Z. et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J. Biol. Chem. 280, 29011–29016 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Mohan, S., Hu, Y. & Edderkaoui, B. Chemokine receptor 3 is a negative regulator of trabecular bone mass in female mice. J. Cell. Biochem. 120, 13974–13984 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Fitzpatrick, L. A. et al. Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss. Proc. Natl Acad. Sci. USA 100, 6027–6032 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takuma, A. et al. Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-β by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J. Biol. Chem. 278, 44667–44674 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Eskildsen, T. et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl Acad. Sci. USA 108, 6139–6144 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang, L. et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol. Ther. 27, 394–410 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, K. et al. Hsa_Circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis. Cell Physiol. Biochem. 46, 2508–2516 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Vidal, C., Cachia, A. & Xuereb-Anastasi, A. Effects of a synonymous variant in exon 9 of the CD44 gene on pre-mRNA splicing in a family with osteoporosis. Bone 45, 736–742 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Marini, F., Cianferotti, L. & Brandi, M. L. Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices? Int. J. Mol. Sci. 17, E1329 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. van Meurs, J. B., Boer, C. G., Lopez-Delgado, L. & Riancho, J. A. Role of epigenomics in bone and cartilage disease. J. Bone Miner. Res. 34, 215–230 (2019).

    Article  PubMed  CAS  Google Scholar 

  83. Reppe, S. et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J. Bone Miner. Res. 30, 249–256 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, Y. & Wang, B. Expression of sclerostin in osteoporotic fracture patients is associated with DNA methylation in the CpG island of the SOST gene. Int. J. Genomics 2019, 7076513 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Delgado-Calle, J. et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 65, 197–205 (2013). The first epigenome-wide association study of human bone detected 241 differentially methylated CpG sites in femoral head trabecular bone specimens between 27 patients with osteoporotic hip fractures and 26 patients with hip osteoarthritis.

    Article  CAS  PubMed  Google Scholar 

  87. Reppe, S. et al. Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics 12, 674–687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Morris, J. A. et al. Epigenome-wide association of DNA methylation in whole blood with bone mineral density. J. Bone Miner. Res. 32, 1644–1650 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Fernandez-Rebollo, E. et al. Primary osteoporosis is not reflected by disease-specific DNA methylation or accelerated epigenetic age in blood. J. Bone Miner. Res. 33, 356–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  91. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  92. Deng, F. Y. et al. Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics 8, 4259–4272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng, F. Y. et al. Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Mol. Cell Proteom. 10, M111.011700 (2011).

    Article  CAS  Google Scholar 

  94. Deng, F. Y. et al. Is GSN significant for hip BMD in female Caucasians? Bone 63, 69–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, X. et al. Anxa2 attenuates osteoblast growth and is associated with hip BMD and osteoporotic fracture in Chinese elderly. PLOS ONE 13, e0194781 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zeng, Y. et al. Mass spectrometry based proteomics profiling of human monocytes. Protein Cell 8, 123–133 (2017). The first comprehensive proteome knowledgebase for human monocytes was developed in 2017; it involves a total of 2,237 unique protein-encoding genes and provides a reference map for future in-depth research on monocyte biology and osteoporosis.

    Article  CAS  PubMed  Google Scholar 

  97. Bhattacharyya, S., Siegel, E. R., Achenbach, S. J., Khosla, S. & Suva, L. J. Serum biomarker profile associated with high bone turnover and BMD in postmenopausal women. J. Bone Miner. Res. 23, 1106–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deng, F. Y. et al. An integrative study ascertained SOD2 as a susceptibility gene for osteoporosis in Chinese. J. Bone Miner. Res. 26, 2695–2701 (2011).

    Article  PubMed  CAS  Google Scholar 

  99. Zhang, L. et al. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics 16, 12–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Zeng, Y. et al. Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis. J. Proteomics 142, 45–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arasu, A. et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J. Clin. Endocrinol. Metab. 97, 2027–2032 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, Q. Y. et al. Long non-coding RNAs: a new regulatory code for osteoporosis. Front. Endocrinol. 9, 587 (2018).

    Article  Google Scholar 

  104. Ma, B. et al. Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS. PLOS ONE 8, e54965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. You, Y. S. et al. Association between the metabolome and low bone mineral density in Taiwanese women determined by 1H NMR spectroscopy. J. Bone Miner. Res. 29, 212–222 (2014). The first metabolomics study of osteoporosis in humans compared high and low BMD groups and reported four distinguishing metabolites: lactate, acetone, acetate and glutamine.

    Article  CAS  PubMed  Google Scholar 

  106. Miyamoto, T. et al. Metabolomics-based profiles predictive of low bone mass in menopausal women. Bone Rep. 9, 11–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhao, Q. et al. Metabolomic profiles associated with bone mineral density in US Caucasian women. Nutr. Metab. 15, 57 (2018).

    Article  CAS  Google Scholar 

  108. Yu, L. et al. Association between metabolic profiles in urine and bone mineral density of pre- and postmenopausal Chinese women. Menopause 26, 94–102 (2019).

    Article  PubMed  Google Scholar 

  109. Cabrera, D. et al. Association of plasma lipids and polar metabolites with low bone mineral density in Singaporean-Chinese menopausal women: a pilot study. Int. J. Environ. Res. Public Health 15, E1045 (2018).

    Article  PubMed  CAS  Google Scholar 

  110. Moayyeri, A. et al. Metabolomic pathways to osteoporosis in middle-aged women: a genome-metabolome-wide Mendelian randomization study. J. Bone Miner. Res. 33, 643–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, L. et al. Assessing the associations of blood metabolites with osteoporosis: a Mendelian randomization study. J. Clin. Endocrinol. Metab. 103, 1850–1855 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D. & McLean, J. A. Untargeted metabolomics strategies — challenges and emerging directions. J. Am. Soc. Mass Spectrom. 27, 1897–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ding, C., Cicuttini, F. & Jones, G. Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthritis Cartilage 15, 479–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Chou, C. H. et al. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res. Ther. 15, R190 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Teschendorff, A. E. & Zheng, S. C. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics 9, 757–768 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Boyle, A. P. et al. Annotation of functional variation in personal genomes using regulomeDB. Genome Res. 22, 1790–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo, Y. et al. Integrating epigenomic elements and gwass identifies bdnf gene affecting bone mineral density and osteoporotic fracture risk. Sci. Rep. 6, 30558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yao, S. et al. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis. Hum. Genet. 136, 963–974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Grundberg, E. et al. Population genomics in a disease targeted primary cell model. Genome Res. 19, 1942–1952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mullin, B. H. et al. Expression quantitative trait locus study of bone mineral density gwas variants in human osteoclasts. J. Bone Miner. Res. 33, 1044–1051 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, X. F. et al. An osteoporosis risk SNP at 1p36.12 acts as an allele-specific enhancer to modulate LINC00339 expression via long-range loop formation. Am. J. Hum. Genet. 102, 776–793 (2018). This paper provides a mechanistic explanation for the influence of the 1p36.12 locus on human osteoporosis, using multiple omics technologies to bridge GWAS results to physiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Meng, X. H. et al. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions. Bone 113, 41–48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLOS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chesi, A. et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 10, 1260 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhu, D. L. et al. Multiple functional variants at 13q14 Risk locus for osteoporosis regulate RANKL expression through long-range super-enhancer. J. Bone Miner. Res. 33, 1335–1346 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, Q. et al. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci. 22, 691–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lusis, A. J. et al. The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 57, 925–942 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Calabrese, G. et al. Systems genetic analysis of osteoblast-lineage cells. PLOS Genet. 8, e1003150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, Y. C. et al. Integrative analysis of genomics and transcriptome data to identify potential functional genes of BMDs in females. J. Bone Miner. Res. 31, 1041–1049 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Chenu, C., Serre, C. M., Raynal, C., Burt-Pichat, B. & Delmas, P. D. Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22, 295–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, J. G. et al. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLOS ONE 10, e0138524 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Al-Barghouthi, B. M. & Farber, C. R. Dissecting the genetics of osteoporosis using systems approaches. Trends Genet. 35, 55–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Duan, X. et al. Deficiency of ATP6V1H causes bone loss by inhibiting bone resorption and bone formation through the TGF-β1 pathway. Theranostics 6, 2183–2195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Saito, A. et al. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Res. Ther. 9, 12 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Freudenthal, B. et al. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J. Endocrinol. 231, R31–R46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Brommage, R. et al. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res. 2, 14034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi)omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Santiago-Algarra, D., Dao, L. T. M., Pradel, L., Espana, A. & Spicuglia, S. Recent advances in high-throughput approaches to dissect enhancer function. F1000Res 6, 939 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Chen, Y. C., Greenbaum, J., Shen, H. & Deng, H. W. Association between gut microbiota and bone health: potential mechanisms and prospective. J. Clin. Endocrinol. Metab. 102, 3635–3646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jones, R. M., Mulle, J. G. & Pacifici, R. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone 115, 59–67 (2018).

    Article  PubMed  Google Scholar 

  148. Wang, J. et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 5, e3450 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Goodrich, J. K., Davenport, E. R., Clark, A. G. & Ley, R. E. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet. 51, 413–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, L. et al. A new method for estimating effect size distribution and heritability from genome-wide association summary results. Hum. Genet. 135, 171–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Wright, N. C. et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 29, 2520–2526 (2014).

    Article  PubMed  Google Scholar 

  154. International Osteoporosis Foundation. Broken bones, broken lives: a roadmap to solve the fragility fracture crisis in Europe (IOF, 2018).

  155. Chen, P., Li, Z. & Hu, Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health 16, 1039 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lee, K. S., Bae, S. H., Lee, S. H., Lee, J. & Lee, D. R. New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: the Korea National Health and Nutrition Examination Survey 2008-2010. J. Korean Med. Sci. 29, 1514–1522 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wade, S. W., Strader, C., Fitzpatrick, L. A., Anthony, M. S. & O’Malley, C. D. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch. Osteoporos. 9, 182 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.L.Y. and S.S.D. acknowledge the support of the National Natural Science Foundation of China (31771399, 31970569 and 81573241), the Innovative Talent Promotion Plan of Shaanxi Province for Young Sci-Tech New Star (2018KJXX-010) and the special guidance funds for the construction of world-class universities (disciplines) and characteristic development in central universities. H.S. and H.W.D. acknowledge the support of grants from the National Institutes of Health (R01AR059781, P20GM109036, R01MH107354, R01MH104680, R01GM109068, R01AR069055, U19AG055373, R01DK115679), the Edward G. Schlieder Endowment and the Drs. W. C. Tsai and P. T. Kung Professorship in Biostatistics from Tulane University.

Author information

Authors and Affiliations

Authors

Contributions

H-W.D., T-L.Y., H.S., S-S.D., L.Z., F-Y.D and Q.Z. researched data for the article, made substantial contributions to the discussion of content, and contributed to the writing and review/editing of the manuscript before submission. A.L. researched data for the article and contributed to the writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Hong-Wen Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks D. Karasik, J. Tobias and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FINEMAP: http://www.christianbenner.com/

GCTA-COJO: https://cnsgenomics.com/software/gcta/#COJO

International Mouse Phenotyping Consortium: http://www.mousephenotype.org/

Mouse Genome Informatics: http://www.informatics.jax.org/

PAINTOR: https://github.com/gkichaev/PAINTOR_V3.0

The Origins of Bone and Cartilage Disease project: http://www.boneandcartilage.com/

UK Biobank: https://www.ukbiobank.ac.uk/

Supplementary information

Supplementary Table 1. Summary of reported osteoporosis-related genes from GWAS.

41574_2019_282_MOESM2_ESM.xlsx

Supplementary Table 2. Drug target information for GWAS genes (drugs for osteoporosis, other diseases or disease pathways).

Supplementary Table 3. Summary of osteoporosis related genes from transcriptomics studies.

Supplementary Table 4. Summary of DNA methylation studies for osteoporosis.

41574_2019_282_MOESM5_ESM.xlsx

Supplementary Table 5 and 6. Summary of potential diagnostic protein biomarkers of osteoporotic fracture predictive protein biomarkers of osteoporotic fracture.

Supplementary Table 7. Summary of reported osteoporosis related metabolites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, TL., Shen, H., Liu, A. et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 16, 91–103 (2020). https://doi.org/10.1038/s41574-019-0282-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0282-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research