Global epidemiology of gout: prevalence, incidence and risk factors

Key Points

  • Gout is the most common form of inflammatory arthritis and is caused by the deposition of monosodium urate crystals in and around the joints

  • The reported prevalence of gout worldwide ranges from 0.1% to approximately 10%, and the incidence from 0.3 to 6 cases per 1,000 person-years

  • Both prevalence and incidence of gout are increasing in many developed countries

  • The prevalence and incidence of gout is highly variable across various regions of the world, with developed countries generally having higher prevalence than developing countries

  • A combination of genetic and environmental factors contribute to the development of gout

  • Major risk factors for gout include hyperuricaemia, genetics, dietary factors, medications, comorbidities and exposure to lead


Gout is a crystal-deposition disease that results from chronic elevation of uric acid levels above the saturation point for monosodium urate (MSU) crystal formation. Initial presentation is mainly severely painful episodes of peripheral joint synovitis (acute self-limiting 'attacks') but joint damage and deformity, chronic usage-related pain and subcutaneous tophus deposition can eventually develop. The global burden of gout is substantial and seems to be increasing in many parts of the world over the past 50 years. However, methodological differences impair the comparison of gout epidemiology between countries. In this comprehensive Review, data from epidemiological studies from diverse regions of the world are synthesized to depict the geographic variation in gout prevalence and incidence. Key advances in the understanding of factors associated with increased risk of gout are also summarized. The collected data indicate that the distribution of gout is uneven across the globe, with prevalence being highest in Pacific countries. Developed countries tend to have a higher burden of gout than developing countries, and seem to have increasing prevalence and incidence of the disease. Some ethnic groups are particularly susceptible to gout, supporting the importance of genetic predisposition. Socioeconomic and dietary factors, as well as comorbidities and medications that can influence uric acid levels and/or facilitate MSU crystal formation, are also important in determining the risk of developing clinically evident gout.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The estimated prevalence of gout across the world.
Figure 2: Prevalence of gout in seven representative countries.
Figure 3: Age-specific and sex-specific incidence of gout in the UK in 2012.


  1. 1

    Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann. Rheum. Dis.

  2. 2

    Puig, J. G. & Martinez, M. A. Hyperuricemia, gout and the metabolic syndrome. Curr. Opin. Rheumatol. 20, 187–191 (2008).

    CAS  Google Scholar 

  3. 3

    Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. J. Clin. Epidemiol. 41, 237–242 (1988).

    CAS  Google Scholar 

  4. 4

    De Vera, M. A., Rahman, M. M., Bhole, V., Kopec, J. A. & Choi, H. K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann. Rheum. Dis. 69, 1162–1164 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Krishnan, E., Baker, J. F., Furst, D. E. & Schumacher, H. R. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 54, 2688–2696 (2006).

    CAS  Google Scholar 

  6. 6

    Kuo, C. F. et al. Risk of myocardial infarction among patients with gout: a nationwide population-based study. Rheumatology (Oxford) 52, 111–117 (2013).

    Google Scholar 

  7. 7

    Yu, K. H. et al. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res. Ther. 14, R83 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    So, A. Epidemiology: Gout—bad for the heart as well as the joint. Nat. Rev. Rheumatol. 6, 386–387 (2010).

    Google Scholar 

  9. 9

    Community Oriented Program for Control of Rheumatic Diseases (COPCORD). COPCORD Website[online], (2015).

  10. 10

    Roddy, E., Zhang, W. & Doherty, M. The changing epidemiology of gout. Nat. Clin. Pract. Rheumatol. 3, 443–449 (2007).

    Google Scholar 

  11. 11

    Doherty, M. et al. Gout: why is this curable disease so seldom cured? Ann. Rheum. Dis. 71, 1765–1770 (2012).

    Google Scholar 

  12. 12

    Chang, S. J. et al. High prevalence of gout and related risk factors in Taiwan's Aborigines. J. Rheumatol. 24, 1364–1369 (1997).

    CAS  Google Scholar 

  13. 13

    Chou, C. T. & Lai, J. S. The epidemiology of hyperuricaemia and gout in Taiwan aborigines. Br. J. Rheumatol. 37, 258–262 (1998).

    CAS  Google Scholar 

  14. 14

    Tu, F. Y. et al. Prevalence of gout with comorbidity aggregations in southern Taiwan. Joint Bone Spine 82, 45–51 (2015).

    Google Scholar 

  15. 15

    Rose, B. S. & Prior, I. A. A surgery of rheumatism in a rural New Zealand Maori community. Ann. Rheum. Dis. 22, 410–415 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Brauer, G. W. & Prior, I. A. A prospective study of gout in New Zealand Maoris. Ann. Rheum. Dis. 37, 466–472 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Klemp, P., Stansfield, S. A., Castle, B. & Robertson, M. C. Gout is on the increase in New Zealand. Ann. Rheum. Dis. 56, 22–26 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Pascart, T., Oehler, E. & Flipo, R. M. Gout in French Polynesia: a survey of common practices. Joint Bone Spine 81, 374–375 (2014).

    Google Scholar 

  19. 19

    Khaltaev, N. & Benevolenskaya, L. I. in The Primary Prevention of Rheumatic Diseases (Ed. Wigley, R. D.) 11–20 (Parthenon Publishing Group, 1994).

    Google Scholar 

  20. 20

    Obregon-Ponce, A., Iraheta, I., Garcia-Ferrer, H., Mejia, B. & Garcia-Kutzbach, A. Prevalence of musculoskeletal diseases in Guatemala, Central America: the COPCORD study of 2 populations. J. Clin. Rheumatol. 18, 170–174 (2012).

    Google Scholar 

  21. 21

    Davatchi, F. et al. WHO–ILAR COPCORD Study (stage 1, urban study) in Iran. J. Rheumatol. 35, 1384 (2008).

    Google Scholar 

  22. 22

    Sandoughi, M. et al. Prevalence of musculoskeletal disorders in southeastern Iran: a WHO–ILAR COPCORD study (stage 1, urban study). Int. J. Rheum. Dis. 16, 509–517 (2013).

    Google Scholar 

  23. 23

    Forghanizadeh, J. et al. Prevalence of rheumatic disease in Fasham. Razi Journal of Medical Sciences 3, 182–191 (1995).

    Google Scholar 

  24. 24

    Moghimi, N. et al. WHO–ILAR COPCORD study (stage 1, urban study) in Sanandaj, Iran. Clin. Rheumatol. 34, 535–543 (2013).

    Google Scholar 

  25. 25

    Davatchi, F. et al. Effect of ethnic origin (Caucasians versus Turks) on the prevalence of rheumatic diseases: a WHO–ILAR COPCORD urban study in Iran. Clin. Rheumatol. 28, 1275–1282 (2009).

    Google Scholar 

  26. 26

    Veerapen, K., Wigley, R. D. & Valkenburg, H. Musculoskeletal pain in Malaysia: a COPCORD survey. J. Rheumatol. 34, 207–213 (2007).

    Google Scholar 

  27. 27

    Dans, L. F., Tankeh-Torres, S., Amante, C. M. & Penserga, E. G. The prevalence of rheumatic diseases in a Filipino urban population: a WHO–ILAR COPCORD Study. World Health Organization. International League of Associations for Rheumatology. Community Oriented Programme for the Control of the Rheumatic Diseases. J. Rheumatol. 24, 1814–1819 (1997).

    CAS  Google Scholar 

  28. 28

    Al-Arfaj, A. S. Hyperuricemia in Saudi Arabia. Rheumatol. Int. 20, 61–64 (2001).

    CAS  Google Scholar 

  29. 29

    Cakir, N. et al. The prevalences of some rheumatic diseases in western Turkey: Havsa study. Rheumatol. Int. 32, 895–908 (2012).

    Google Scholar 

  30. 30

    Muller, A. S. Population Studies on the Prevalence of Rheumatic Diseases in Liberia and Nigeria. Thesis, University of Leiden (1970).

    Google Scholar 

  31. 31

    Beighton, P., Soskolne, C. L., Solomon, L. & Sweet, B. Serum uric-acid levels in a Nama (Hottentot) community in South-West-Africa. S. Afr. J. Sci. 70, 281–283 (1974).

    Google Scholar 

  32. 32

    Beighton, P., Daynes, G. & Soskolne, C. L. Serum uric acid concentrations in a Xhosa community in the Transkei of Southern Africa. Ann. Rheum. Dis. 35, 77–80 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Lutalo, S. K. Chronic inflammatory rheumatic diseases in black Zimbabweans. Ann. Rheum. Dis. 44, 121–125 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Beighton, P., Solomon, L., Soskolne, C. L. & Sweet, M. B. Rheumatic disorders in the South African Negro. Part IV. Gout and hyperuricaemia. S. Afr. Med. J. 51, 969–972 (1977).

    CAS  Google Scholar 

  35. 35

    Wijnands, J. M. et al. Determinants of the prevalence of gout in the general population: a systematic review and meta-regression. Eur. J. Epidemiol. (2014).

  36. 36

    Zhu, Y., Pandya, B. J. & Choi, H. K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008 Arthritis Rheum. 63, 3136–3141 (2011).

    Google Scholar 

  37. 37

    Badley E. D. M. Arthritis in Canada: an ongoing challenge (Health Canada, Ottawa, 2003).

  38. 38

    Anagnostopoulos, I. et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskelet. Disord. 11, 98 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann. Rheum. Dis.

  40. 40

    Sicras-Mainar, A., Navarro-Artieda, R. & Ibanez-Nolla, J. Resource use and economic impact of patients with gout: a multicenter, population-wide study [article in English, Spanish]. Reumatol. Clin. 9, 94–100 (2013).

    Google Scholar 

  41. 41

    Picavet, H. S. & Hazes, J. M. Prevalence of self reported musculoskeletal diseases is high. Ann. Rheum. Dis. 62, 644–650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Annemans, L. et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000–2005 Ann. Rheum. Dis. 67, 960–966 (2008).

    CAS  Google Scholar 

  43. 43

    Bardin, T. et al. Prevalence of gout in the adult population of France in 2013 [abstract]. Ann. Rheum. Dis. 73 (Suppl. 2), 787–788 (2014).

    Google Scholar 

  44. 44

    Trifiro, G. et al. Epidemiology of gout and hyperuricaemia in Italy during the years 2005–2009: a nationwide population-based study. Ann. Rheum. Dis. 72, 694–700 (2013).

    CAS  Google Scholar 

  45. 45

    Reis, C. & Viana Queiroz, M. Prevalence of self-reported rheumatic diseases in a Portuguese population. Acta Reumatol. Port. 39, 54–59 (2014).

    Google Scholar 

  46. 46

    Hanova, P., Pavelka, K., Dostal, C., Holcatova, I. & Pikhart, H. Epidemiology of rheumatoid arthritis, juvenile idiopathic arthritis and gout in two regions of the Czech Republic in a descriptive population-based survey in 2002–2003. Clin. Exp. Rheumatol. 24, 499–507 (2006).

    CAS  Google Scholar 

  47. 47

    Minaur, N., Sawyers, S., Parker, J. & Darmawan, J. Rheumatic disease in an Australian Aboriginal community in North Queensland, Australia. A WHO–ILAR COPCORD survey. J. Rheumatol. 31, 965–972 (2004).

    Google Scholar 

  48. 48

    Australian Bureau of Statistics. National Health Survey, summary of results, Australia, 1995 (Australian Bureau of Statistics, Canberra, 1996).

  49. 49

    Winnard, D. et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford) 51, 901–909 (2012).

    Google Scholar 

  50. 50

    Kawasaki T. S. K. Epidemiology survey of gout using residents' health checks. Gou t and Nucleic Acid Metabolism 30, 66 (2006).

    Google Scholar 

  51. 51

    Lee, C. H. & Sung, N. Y. The prevalence and features of Korean gout patients using the National Health Insurance Corporation Database. J. Korean Rheum. Assoc. 18, 94–100 (2011).

    Google Scholar 

  52. 52

    Census and Statistics Department. Special Topics Report No. 27 on Social Statistics: persons with disabilities and chronic diseases (Government of Hong Kong Special Adminstrative Region, 2001).

  53. 53

    Teng, G. G. et al. Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Ann. Rheum. Dis. 71, 924–928 (2012).

    Google Scholar 

  54. 54

    Kuo, C. F. et al. Familial aggregation of gout and relative genetic and environmental contributions: a nationwide population study in Taiwan. Ann. Rheum. Dis. 74, 369–374 (2015).

    Google Scholar 

  55. 55

    Isomäki, H. A. & Takkunen, H. Gout and hyperuricemia in a Finnish rural population. Acta Rheumatol. Scand. 15, 112–120 (1969).

    Google Scholar 

  56. 56

    Popert, A. J. & Hewitt, J. V. Gout and hyperuricaemia in rural and urban populations. Ann. Rheum. Dis. 21, 154–163 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Mikuls, T. R. et al. Gout epidemiology: results from the UK General Practice Research Database, 1990–1999 Ann. Rheum. Dis. 64, 267–72 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Robinson, P. C., Taylor, W. J. & Merriman, T. R. Systematic review of the prevalence of gout and hyperuricaemia in Australia. Intern. Med. J. 42, 997–1007 (2012).

    CAS  Google Scholar 

  59. 59

    Chou, C. T. et al. Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. J. Rheumatol. 21, 302–306 (1994).

    CAS  Google Scholar 

  60. 60

    Lin, K. C., Lin, H. Y. & Chou, P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J. Rheumatol. 27, 1045–1050 (2000).

    CAS  Google Scholar 

  61. 61

    Chang, H. Y., Pan, W. H., Yeh, W. T. & Tsai, K. S. Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–1996). J. Rheumatol. 28, 1640–1646 (2001).

    CAS  Google Scholar 

  62. 62

    Chuang, S. Y., Lee, S. C., Hsieh, Y. T. & Pan, W. H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993–1996 to 2005–2008 Asia Pac. J. Clin. Nutr. 20, 301–8 (2011).

    CAS  Google Scholar 

  63. 63

    Kuo, C. F. et al. Epidemiology and management of gout in Taiwan: a nationwide population study. Arthritis Res. Ther. 17, 13 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Pfleger, B. Burden and control of musculoskeletal conditions in developing countries: a joint WHO/ILAR/BJD meeting report. Clin. Rheumatol. 26, 1217–1227 (2007).

    Google Scholar 

  65. 65

    Cardiel, M. H. & Rojas-Serrano, J. Community based study to estimate prevalence, burden of illness and help seeking behavior in rheumatic diseases in Mexico City. A COPCORD study. Clin. Exp. Rheumatol. 20, 617–624 (2002).

    CAS  Google Scholar 

  66. 66

    Pelaez-Ballestas, I. et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J. Rheumatol. Suppl. 86, 3–8 (2011).

    Google Scholar 

  67. 67

    Reyes-Llerena, G. A. et al. Community-based study to estimate prevalence and burden of illness of rheumatic diseases in Cuba: a COPCORD study. J. Clin. Rheumatol. 15, 51–55 (2009).

    Google Scholar 

  68. 68

    Granados, Y. et al. Prevalence of musculoskeletal disorders and rheumatic diseases in an urban community in Monagas State, Venezuela: a COPCORD study. Clin. Rheumatol. (2014).

  69. 69

    Bremner, J. M. & Lawrence, J. S. Population studies of serum uric acid. Proc. R. Soc. Med. 59, 319–325 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Darmawan, J., Valkenburg, H. A., Muirden, K. D. & Wigley, R. D. The epidemiology of gout and hyperuricemia in a rural population of Java. J. Rheumatol. 19, 1595–1599 (1992).

    CAS  Google Scholar 

  71. 71

    Haq, S. A. et al. Prevalence of rheumatic diseases and associated outcomes in rural and urban communities in Bangladesh: a COPCORD study. J. Rheumatol. 32, 348–353 (2005).

    Google Scholar 

  72. 72

    Dai, S. M. et al. Prevalence of rheumatic symptoms, rheumatoid arthritis, ankylosing spondylitis, and gout in Shanghai, China: a COPCORD study. J. Rheumatol. 30, 2245–2251 (2003).

    Google Scholar 

  73. 73

    Chen, S., Du, H., Wang, Y. & Xu, L. The epidemiology study of hyperuricemia and gout in a community population of Huangpu District in Shanghai. Chin. Med. J. (Engl.) 111, 228–230 (1998).

    CAS  Google Scholar 

  74. 74

    Chopra, A. et al. Prevalence of rheumatic diseases in a rural population in western India: a WHO–ILAR COPCORD Study. J. Assoc. Physicians India 49, 240–246 (2001).

    CAS  Google Scholar 

  75. 75

    Farooqi, A. & Gibson, T. Prevalence of the major rheumatic disorders in the adult population of north Pakistan. Br. J. Rheumatol. 37, 491–495 (1998).

    CAS  Google Scholar 

  76. 76

    Chaiamnuay, P., Darmawan, J., Muirden, K. D. & Assawatanabodee, P. Epidemiology of rheumatic disease in rural Thailand: a WHO–ILAR COPCORD study. Community Oriented Programme for the Control of Rheumatic Disease. J. Rheumatol. 25, 1382–1387 (1998).

    CAS  Google Scholar 

  77. 77

    Minh Hoa, T. T. et al. Prevalence of the rheumatic diseases in urban Vietnam: a WHO–ILAR COPCORD study. J. Rheumatol. 30, 2252–2256 (2003).

    Google Scholar 

  78. 78

    Miao, Z. et al. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J. Rheumatol. 35, 1859–1864 (2008).

    Google Scholar 

  79. 79

    Nan, H. et al. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J. Rheumatol. 33, 1346–1350 (2006).

    Google Scholar 

  80. 80

    Zeng, Q. et al. Primary gout in Shantou: a clinical and epidemiological study. Chin. Med. J. (Engl.) 116, 66–69 (2003).

    Google Scholar 

  81. 81

    Li, R. et al. Epidemiology of eight common rheumatic diseases in China: a large-scale cross-sectional survey in Beijing. Rheumatology (Oxford) 51, 721–729 (2012).

    Google Scholar 

  82. 82

    Mahajan, A., Jasrotia, D. S., Manhas, A. S. & Jamwal, S. S. Prevalence of major rheumatic disorders in Jammu. J. Med. Educ. Res. (2003).

  83. 83

    Tsitlanadze, V. G., Kartvelishvili, E., Shakulashvili, N. A. & Shalamberidze, L. P. Incidence and various risk factors for gout in the Georgian SSR [article in Russian]. Ter. Arkh. 59, 18–20 (1987).

    CAS  Google Scholar 

  84. 84

    Sagna, Y. et al. Prevalence and associated risk factors of diabetes and impaired fasting glucose in urban population; a study from Burkina Faso. J. Diabetol. 2, 4 (2014).

    Google Scholar 

  85. 85

    Mijiyawa, M. & Oniankitan, O. Risk factors for gout in Togolese patients. Joint Bone Spine 67, 441–445 (2000).

    CAS  Google Scholar 

  86. 86

    Burch, T. A., O'Brien, W. M., Need, R. & Kurland, L. T. Hyperuricaemia and gout in the Mariana Islands. Ann. Rheum. Dis. 25, 114–116 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Bennett, P. H. & Wood, P. H. N. Population studies of the rheumatic diseases: proceedings of the third international symposium, New York, June 5th–10th, 1966 (Excerpta Medica Foundation, 1968).

  88. 88

    Prior, I. A., Rose, B. S., Harvey, H. P. & Davidson, F. Hyperuricaemia, gout, and diabetic abnormality in Polynesian people. Lancet 1, 333–338 (1966).

    CAS  Google Scholar 

  89. 89

    Zimmet, P. Z., Whitehouse, S., Jackson, L. & Thoma, K. High prevalence of hyperuricaemia and gout in an urbanised Micronesian population. Br. Med. J. 1, 1237–1239 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Jackson, L. et al. Hyperuricaemia and gout in Western Samoans. J. Chronic Dis. 34, 65–75 (1981).

    CAS  Google Scholar 

  91. 91

    O'Sullivan, J. B. Gout in a New England town: a prevalence study in Sudbury, Massachusetts. Ann. Rheum. Dis. 31, 166–169 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Maynard, J. W. et al. Racial differences in gout incidence in a population-based cohort: Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 179, 576–583 (2014).

    Google Scholar 

  93. 93

    Arromdee, E., Michet, C. J., Crowson, C. S., O'Fallon, W. M. & Gabriel, S. E. Epidemiology of gout: is the incidence rising? J. Rheumatol. 29, 2403–2406 (2002).

    Google Scholar 

  94. 94

    Stewart, O. J. & Silman, A. J. Review of UK data on the rheumatic diseases--4. Gout. Br. J. Rheumatol. 29, 485–488 (1990).

    CAS  Google Scholar 

  95. 95

    Elliot, A. J., Cross, K. W. & Fleming, D. M. Seasonality and trends in the incidence and prevalence of gout in England and Wales 1994–2007 Ann. Rheum. Dis. 68, 1728–1733 (2009).

    CAS  Google Scholar 

  96. 96

    Hall, A. P., Barry, P. E., Dawber, T. R. & McNamara, P. M. Epidemiology of gout and hyperuricemia. A long-term population study. Am. J. Med. 42, 27–37 (1967).

    CAS  Google Scholar 

  97. 97

    Kippen, I., Klinenberg, J. R., Weinberger, A. & Wilcox, W. R. Factors affecting urate solubility in vitro. Ann. Rheum. Dis. 33, 313–317 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Lin, K. C., Lin, H. Y. & Chou, P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 27, 1501–1505 (2000).

    CAS  Google Scholar 

  99. 99

    Duskin-Bitan, H. et al. The degree of asymptomatic hyperuricemia and the risk of gout. A retrospective analysis of a large cohort. Clin. Rheumatol. 33, 549–553 (2014).

    Google Scholar 

  100. 100

    Zalokar, J., Lellouch, J., Claude, J. R. & Kuntz, D. Serum uric acid in 23,923 men and gout in a subsample of 4,257 men in France. J Chronic Dis. 25, 305–312 (1972).

    CAS  Google Scholar 

  101. 101

    Campion, E. W., Glynn, R. J. & DeLabry, L. O. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am. J. Med. 82, 421–426 (1987).

    CAS  Google Scholar 

  102. 102

    Mituszova, M., Judak, A., Poor, G., Gyodi, E. & Stenszky, V. Clinical and family studies in Hungarian patients with gout. Rheumatol. Int. 12, 165–168 (1992).

    CAS  Google Scholar 

  103. 103

    Blumberg, B. S. Heredity of gout and hyperuricemia. Arthritis Rheum. 8, 627–647 (1965).

    CAS  Google Scholar 

  104. 104

    Emmerson, B. T. Heredity in primary gout. Australas. Ann. Med. 9, 168–175 (1960).

    CAS  Google Scholar 

  105. 105

    Hauge, M. & Harvald, B. Heredity in gout and hyperuricemia. Acta Med. Scand. 152, 247–257 (1955).

    CAS  Google Scholar 

  106. 106

    Smyth, C. J., Cotterman, C. W. & Freyberg, R. H. The genetics of gout and hyperuricaemia. Ann. Rheum. Dis. 7, 248 (1948).

    CAS  Google Scholar 

  107. 107

    Grahame, R. & Scott, J. T. Clinical survey of 354 patients with gout. Ann. Rheum. Dis. 29, 461–468 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Copeman, W. S. C. A short history of the gout and the rheumatic diseases (University of California Press, 1964).

    Google Scholar 

  109. 109

    Smyth, C. J., Cotterman, C. W. & Freyberg, R. H. The genetics of gout and hyperuricaemia; an analysis of 19 families. J. Clin. Invest. 27, 749–759 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Cobb, S. The frequency of the rheumatic diseases (Harvard University Press, 1971).

    Google Scholar 

  111. 111

    Prior, I. A., Welby, T. J., Ostbye, T., Salmond, C. E. & Stokes, Y. M. Migration and gout: the Tokelau Island migrant study. Br. Med. J. (Clin. Res. Ed.) 295, 457–461 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Choi, H. K., Zhu, Y. & Mount, D. B. Genetics of gout. Curr. Opin. Rheumatol. 22, 144–151 (2010).

    Google Scholar 

  113. 113

    Turner, J. J. et al. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J. Clin. Endocrinol. Metab. 88, 1398–1401 (2003).

    CAS  Google Scholar 

  114. 114

    Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Google Scholar 

  115. 115

    Phipps-Green, A. J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis.

  116. 116

    Rice, T. et al. Heterogeneity in the familial aggregation of fasting serum uric acid level in five North American populations: the Lipid Research Clinics Family Study. Am. J. Med. Genet. 36, 219–225 (1990).

    CAS  Google Scholar 

  117. 117

    Nath, S. D. et al. Genome scan for determinants of serum uric acid variability. J. Am. Soc. Nephrol. 18, 3156–3163 (2007).

    CAS  Google Scholar 

  118. 118

    Wilk, J. B. et al. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum. Genet. 106, 355–359 (2000).

    CAS  Google Scholar 

  119. 119

    Hak, A. E., Curhan, G. C., Grodstein, F. & Choi, H. K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis. 69, 1305–1309 (2010).

    Google Scholar 

  120. 120

    Royal College of General Practitioners, Office of Population Censuses and Surveys & Department of Health and Social Security. Morbidity statistics from general practice 1970–1971: socio-economic analyses (H. M. S. O., 1982).

  121. 121

    Zollner, N. & Griebsch, A. Diet and gout. Adv. Exp. Med. Biol. 41, 435–442 (1974).

    CAS  Google Scholar 

  122. 122

    Gordon, T. & Kannel, W. B. Drinking and its relation to smoking, BP, blood lipids, and uric acid. The Framingham study. Arch. Intern. Med. 143, 1366–1374 (1983).

    CAS  Google Scholar 

  123. 123

    Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

    CAS  Google Scholar 

  124. 124

    Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363, 1277–1281 (2004).

    Google Scholar 

  125. 125

    Choi, H. K. & Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336, 309–312 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Perheentupa, J. & Raivio, K. Fructose-induced hyperuricaemia. Lancet 2, 528–531 (1967).

    CAS  Google Scholar 

  127. 127

    Batt, C. et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 73, 2101–2106 (2014).

    Google Scholar 

  128. 128

    Choi, H. K., Willett, W. & Curhan, G. Coffee consumption and risk of incident gout in men: a prospective study. Arthritis Rheum. 56, 2049–2055 (2007).

    CAS  Google Scholar 

  129. 129

    Zhang, Y. et al. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis Rheum. 64, 4004–4011 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Choi, H. K., Gao, X. & Curhan, G. Vitamin C intake and the risk of gout in men: a prospective study. Arch. Intern. Med. 169, 502–507 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Maynard, J. W. et al. Incident gout in women and association with obesity in the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Med. 125, 717.e9–717.e17 (2012).

    Google Scholar 

  132. 132

    McAdams-DeMarco, M. A., Maynard, J. W., Baer, A. N. & Coresh, J. Hypertension and the risk of incident gout in a population-based study: the atherosclerosis risk in communities cohort. J. Clin. Hypertens. (Greenwich) 14, 675–679 (2012).

    Google Scholar 

  133. 133

    Rho, Y. H. et al. The prevalence of metabolic syndrome in patients with gout: a multicenter study. J. Korean Med. Sci. 20, 1029–1033 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Cea Soriano, L., Rothenbacher, D., Choi, H. K. & Garcia Rodriguez, L. A. Contemporary epidemiology of gout in the UK general population. Arthritis Res. Ther. 13, R39 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Domrongkitchaiporn, S. et al. Risk factors for development of decreased kidney function in a southeast Asian population: a 12-year cohort study. J. Am. Soc. Nephrol. 16, 791–799 (2005).

    Google Scholar 

  136. 136

    Obermayr, R. P. et al. Predictors of new-onset decline in kidney function in a general middle-European population. Nephrol. Dial. Transplant. 23, 1265–1273 (2008).

    Google Scholar 

  137. 137

    Obermayr, R. P. et al. Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol. 19, 2407–2413 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Krishnan, E. Chronic kidney disease and the risk of incident gout among middle-aged men: a seven-year prospective observational study. Arthritis Rheum. 65, 3271–3278 (2013).

    Google Scholar 

  139. 139

    Palmer, T. M. et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ 347, f4262 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. 140

    Hughes, K., Flynn, T., de Zoysa, J., Dalbeth, N. & Merriman, T. R. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 85, 344–351 (2014).

    CAS  Google Scholar 

  141. 141

    Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One 7, e39321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Merola, J. F., Wu, S., Han, J., Choi, H. K. & Qureshi, A. A. Psoriasis, psoriatic arthritis and risk of gout in US men and women. Ann. Rheum. Dis.

  143. 143

    Reynolds, M. D. Gout and hyperuricemia associated with sickle-cell anemia. Semin. Arthritis Rheum. 12, 404–413 (1983).

    CAS  Google Scholar 

  144. 144

    McAdams-DeMarco, M. A., Maynard, J. W., Coresh, J. & Baer, A. N. Anemia and the onset of gout in a population-based cohort of adults: Atherosclerosis Risk in Communities study. Arthritis Res. Ther. 14, R193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Khokhar, N. Gouty arthritis in chronic obstructive pulmonary disease. Arch. Intern. Med. 142, 838 (1982).

    CAS  Google Scholar 

  146. 146

    Kuzell, W. C. et al. Some observations on 520 gouty patients. J. Chronic Dis. 2, 645–669 (1955).

    CAS  Google Scholar 

  147. 147

    Durward, W. F. Letter: Gout and hypothyroidism in males. Arthritis Rheum. 19, 123 (1976).

    CAS  Google Scholar 

  148. 148

    Erickson, A. R., Enzenauer, R. J., Nordstrom, D. M. & Merenich, J. A. The prevalence of hypothyroidism in gout. Am. J. Med. 97, 231–234 (1994).

    CAS  Google Scholar 

  149. 149

    See, L. C. et al. Hyperthyroid and hypothyroid status was strongly associated with gout and weakly associated with hyperuricaemia. PLoS One 9, e114579 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. 150

    Mariani, L. H. & Berns, J. S. The renal manifestations of thyroid disease. J. Am. Soc. Nephrol. 23, 22–26 (2012).

    CAS  Google Scholar 

  151. 151

    Bruderer, S., Bodmer, M., Jick, S. S. & Meier, C. R. Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 66, 185–196 (2014).

    Google Scholar 

  152. 152

    Choi, H. K., Soriano, L. C., Zhang, Y. & Rodriguez, L. A. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 344, d8190 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    McAdams-DeMarco, M. A. et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann. Rheum. Dis. 72, 701–706 (2013).

    Google Scholar 

  154. 154

    Lin, H. Y. et al. Cyclosporine-induced hyperuricemia and gout. N. Engl. J. Med. 321, 287–292 (1989).

    CAS  Google Scholar 

  155. 155

    Stamp, L., Searle, M., O'Donnell, J. & Chapman, P. Gout in solid organ transplantation: a challenging clinical problem. Drugs 65, 2593–2611 (2005).

    CAS  Google Scholar 

  156. 156

    So, A. & Thorens, B. Uric acid transport and disease. J. Clin. Invest. 120, 1791–1799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Zhang, Y. et al. Low-dose aspirin use and recurrent gout attacks. Ann. Rheum. Dis. 73, 385–390 (2014).

    CAS  Google Scholar 

  158. 158

    Fazio, S. et al. Long-term efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in hyperlipidaemic patients with diabetes or metabolic syndrome. Diabetes Obes. Metab. 12, 983–993 (2010).

    CAS  Google Scholar 

  159. 159

    Amodio, M. I., Bengualid, V. & Lowy, F. D. Development of acute gout secondary to pyrazinamide in a patient without a prior history of gout. DICP 24, 1115–1116 (1990).

    CAS  Google Scholar 

  160. 160

    Rao, T. P. & Schmitt, J. K. Gout secondary to pyrazinamide and ethambutol. Va Med. Q. 123, 271 (1996).

    CAS  Google Scholar 

  161. 161

    Creighton, S., Miller, R., Edwards, S., Copas, A. & French, P. Is ritonavir boosting associated with gout? Int. J. STD AIDS 16, 362–364 (2005).

    CAS  Google Scholar 

  162. 162

    Ball, G. V. Two epidemics of gout. Bull. Hist. Med. 45, 401–408 (1971).

    CAS  Google Scholar 

  163. 163

    Lin, J. L., Tan, D. T., Ho, H. H. & Yu, C. C. Environmental lead exposure and urate excretion in the general population. Am. J. Med. 113, 563–568 (2002).

    CAS  Google Scholar 

  164. 164

    Krishnan, E., Lingala, B. & Bhalla, V. Low-level lead exposure and the prevalence of gout: an observational study. Ann. Intern. Med. 157, 233–241 (2012).

    Google Scholar 

  165. 165

    Shadick, N. A. et al. Effect of low level lead exposure on hyperuricemia and gout among middle aged and elderly men: the normative aging study. J. Rheumatol. 27, 1708–1712 (2000).

    CAS  Google Scholar 

  166. 166

    Lin, J. L., Lin-Tan, D. T., Hsu, K. H. & Yu, C. C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 348, 277–286 (2003).

    CAS  Google Scholar 

  167. 167

    Martillo, M. A., Nazzal, L. & Crittenden, D. B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 16, 400 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. 168

    Burt, H. M. & Dutt, Y. C. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann. Rheum. Dis. 45, 858–864 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Wilcox, W. R. & Khalaf, A. A. Nucleation of monosodium urate crystals. Ann. Rheum. Dis. 34, 332–339 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Tak, H. K., Wilcox, W. R. & Cooper, S. M. The effect of lead upon urate nucleation. Arthritis Rheum. 24, 1291–1295 (1981).

    CAS  Google Scholar 

  171. 171

    Perricone, E. & Brandt, K. D. Enhancement of urate solubility by connective tissue. I. Effect of proteoglycan aggregates and buffer cation. Arthritis Rheum. 21, 453–460 (1978).

    CAS  Google Scholar 

  172. 172

    Pascual, E. & Ordonez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Simkin, P. A. The pathogenesis of podagra. Ann. Intern. Med. 86, 230–233 (1977).

    CAS  Google Scholar 

  174. 174

    Zhang, Y. et al. Purine-rich foods intake and recurrent gout attacks. Ann. Rheum. Dis. 71, 1448–1453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Neogi, T. et al. Alcohol quantity and type on risk of recurrent gout attacks: an internet-based case-crossover study. Am. J. Med. 127, 311–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. 176

    Choi, H. K. & Curhan, G. Coffee consumption and risk of incident gout in women: the Nurses' Health Study. Am. J. Clin. Nutr. 92, 922–927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Roubenoff, R. et al. Incidence and risk factors for gout in white men. JAMA 266, 3004–3007 (1991).

    CAS  Google Scholar 

  178. 178

    Hochberg, M. C. et al. Racial differences in the incidence of gout. The role of hypertension. Arthritis Rheum. 38, 628–632 (1995).

    CAS  Google Scholar 

  179. 179

    Krishnan, E. Gout in African Americans. Am. J. Med. 127, 858–864 (2014).

    Google Scholar 

  180. 180

    Currie, W. J. Prevalence and incidence of the diagnosis of gout in Great Britain. Ann. Rheum. Dis. 38, 101–106 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Isomäki, H., Raunio, J., von Essen, R. & Hämeenkorpi, R. Incidence of inflammatory rheumatic diseases in Finland. Scand. J. Rheumatol 7, 188–192 (1978).

    Google Scholar 

  182. 182

    Williams, P. T. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am. J. Clin. Nutr. 87, 1480–1487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    DeMarco, M. M., Maynard, J. W., Baer, A. N. & Coresh, J. Alcohol intake is associated with incident gout among black and white, men and women in the Atherosclerosis Risk in Communities Study [abstract]. Arthritis Rheum. 63 (Suppl. 10), 887 (2011).

    Google Scholar 

  184. 184

    Zhang, Y. et al. Alcohol consumption as a trigger of recurrent gout attacks. Am. J. Med. 119, 800.e11–800.e16 (2006).

    Google Scholar 

  185. 185

    Bhole, V., de Vera, M., Rahman, M. M., Krishnan, E. & Choi, H. Epidemiology of gout in women: fifty-two-year followup of a prospective cohort. Arthritis. Rheum. 62, 1069–1076 (2010).

    Google Scholar 

  186. 186

    Lyu, L. C. et al. A case-control study of the association of diet and obesity with gout in Taiwan. Am. J. Clin. Nutr. 78, 690–701 (2003).

    CAS  Google Scholar 

  187. 187

    Zhang, W. et al. EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 65, 1301–1311 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Kellgren, J. H. et al. (Eds) The epidemiology of chronic rheumatism Vol. 1 (Blackwell, 1963).

    Google Scholar 

  189. 189

    Wallace, S. L. et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 20, 895–900 (1977).

    CAS  Google Scholar 

  190. 190

    Malik, A., Schumacher, H. R., Dinnella, J. E. & Clayburne, G. M. Clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. J Clin. Rheumatol. 15, 22–24 (2009).

    Google Scholar 

  191. 191

    Taylor, W. J. et al. Performance of classification criteria for gout in early and established disease. Ann. Rheum. Dis. (2014).

  192. 192

    Neogi, T. et al. The Proposed New Preliminary Gout Classification Criteria. Annual Congress of American College of Rheumatology (2014).

  193. 193

    McAdams, M. A. et al. Reliability and sensitivity of the self-report of physician-diagnosed gout in the campaign against cancer and heart disease and the atherosclerosis risk in the community cohorts. J. Rheumatol. 38, 135–141 (2011).

    Google Scholar 

  194. 194

    Harrold, L. R. et al. Validity of gout diagnoses in administrative data. Arthritis Rheum. 57, 103–108 (2007).

    Google Scholar 

  195. 195

    Singh, J. A., Hodges, J. S., Toscano, J. P. & Asch, S. M. Quality of care for gout in the US needs improvement. Arthritis Rheum. 57, 822–829 (2007).

    PubMed  PubMed Central  Google Scholar 

  196. 196

    Meier, C. R. & Jick, H. Omeprazole, other antiulcer drugs and newly diagnosed gout. Br. J. Clin Pharmacol 44, 175–178 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Taylor, W. J. et al. Toward a valid definition of gout flare: results of consensus exercises using Delphi methodology and cognitive mapping. Arthritis Rheum. 61, 535–543 (2009).

    CAS  Google Scholar 

Download references

Author information




All authors made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. C.-F.K. researched data for and wrote the article.

Corresponding author

Correspondence to Chang-Fu Kuo.

Ethics declarations

Competing interests

W.Z. declares that he has received personal fees from Daiichi Sankyo and is a member of guideline development groups for gout and osteoarthritis for the National Institute for Health and Care Excellence (NICE), EULAR and the British Society for Rheumatology (BSR). M.D. declares that he has received fees from ad hoc advisory activities related to gout and osteoarthritis (outside the submitted work) for Astrazeneca, Menarini, Nordic Biosciences, Novartis and Pfizer; he also declares that he is a clinical expert adviser on gout and osteoarthritis for NICE and a member of guideline development groups for gout for EULAR and BSR. The other authors declare no competing interests.

Supplementary information

Supplementary Tables

Supplementary Tables 1–5 (DOC 202 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuo, C., Grainge, M., Zhang, W. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11, 649–662 (2015).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing