Pathogenesis of ankylosing spondylitis

Abstract

Ankylosing spondylitis (AS) is a potentially disabling form of seronegative spondyloarthritis. The main symptom of AS is inflammatory spinal pain; with time, some patients develop ankylosis and spinal immobility. The pathology mainly affects the entheses, where ligaments, tendons and capsules are attached to the bone. Three processes are observed at the entheses: inflammation, bone erosion and syndesmophyte (spur) formation. Tumor necrosis factor is an important mediator of the inflammatory processes, but this proinflammatory cytokine is not closely involved in bone erosion or syndesmophyte formation. The major causative factors of AS are genetic, with the gene encoding HLA-B27 being the most important genetic factor. Several other susceptibility genes have also been identified. An enormous number of papers have been published and many diverse hypotheses have been generated regarding the pathogenesis of AS. This Review outlines the key areas of current research in this field, describes several hypotheses regarding the pathogenesis of AS, which are under intense investigation, and concludes with a dissection of the processes involved in bone erosion and syndesmophyte formation.

Key Points

  • Ankylosing spondylitis (AS) is a predominantly genetic disease; HLA-B27 is the most important gene

  • Several HLA-B27-related disease mechanisms are under investigation: the arthritogenic hypothesis, the unfolded protein response hypothesis, and the free heavy chain hypothesis

  • The non-HLA-B27 genes identified so far might have a role in the processing of HLA-B27 molecules or in cytokine regulation

  • In addition to inflammation, bone erosion and syndesmophyte formation lead to patient disability in AS, but these processes appear to be uncoupled from inflammation

  • A major future direction is to understand the processes of bone erosion and syndesmophyte formation in AS, and how these processes can be controlled

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pathology of entheses in ankylosing spondylitis.
Figure 2: Three different HLA-B27 structures and hypotheses as to how they might induce disease processes in ankylosing spondylitis.

References

  1. 1

    Braun, J. & Sieper, J. Ankylosing spondylitis. Lancet 369, 1379–1390 (2007).

    Article  Google Scholar 

  2. 2

    Sieper, J., Rudwaleit, M., Khan, M. A. & Braun, J. Concepts and epidemiology of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 20, 401–417 (2006).

    Article  Google Scholar 

  3. 3

    Goh, L. & Samanta, A. A systematic MEDLINE analysis of therapeutic approaches in ankylosing spondylitis. Rheumatol. Int. 29, 1123–1135 (2009).

    Article  CAS  Google Scholar 

  4. 4

    McLeod, C. et al. Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation. Health Technol. Assess. 11, 1–158, iii–iv (2007).

    Article  CAS  Google Scholar 

  5. 5

    Zochling, J. et al. ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann. Rheum. Dis. 65, 442–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Schett, G., Landewé, R. & van der Heijde, D. Tumour necrosis factor blockers and structural remodelling in ankylosing spondylitis: what is reality and what is fiction? Ann. Rheum. Dis. 66, 709–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    van der Heijde, D. et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58, 3063–3070 (2008).

    Article  PubMed  Google Scholar 

  8. 8

    van der Heijde, D. et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 58, 1324–1331 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    van der Heijde, D. et al. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res. Ther. 11, R127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Cawley, M. I., Chalmers, T. M., Kellgren, J. H. & Ball, J. Destructive lesions of vertebral bodies in ankylosing spondylitis. Ann. Rheum. Dis. 31, 345–358 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Appel, H. et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum. 54, 2845–2851 (2006).

    Article  PubMed  Google Scholar 

  14. 14

    Appel, H. et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone–cartilage interface and subchondral bone marrow. Arthritis Rheum. 54, 1805–1813 (2006).

    Article  PubMed  Google Scholar 

  15. 15

    François, R. J., Neure, L., Sieper, J. & Braun, J. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumour necrosis factor alpha in two patients with early disease and transforming growth factor beta in three more advanced cases. Ann. Rheum. Dis. 65, 713–720 (2006).

    Article  CAS  Google Scholar 

  16. 16

    Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Benjamin, M. & McGonagle, D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv. Exp. Med. Biol. 649, 57–70 (2009).

    Article  PubMed  Google Scholar 

  18. 18

    Baeten, D. et al. Diagnostic classification of spondylarthropathy and rheumatoid arthritis by synovial histopathology: a prospective study in 154 consecutive patients. Arthritis Rheum. 50, 2931–2941 (2004).

    Article  Google Scholar 

  19. 19

    Baeten, D. et al. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 50, 1611–1623 (2004).

    Article  Google Scholar 

  20. 20

    Vandooren, B. et al. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 60, 966–975 (2009).

    Article  CAS  Google Scholar 

  21. 21

    Feldmann, M. & Maini, S. R. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol. Rev. 223, 7–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  Google Scholar 

  24. 24

    Brown, M. A., Laval, S. H., Brophy, S. & Calin, A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 59, 883–886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis consortium (TASC); Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Australo-Anglo-American Spondyloarthritis consortium (TASC); Reveille, J. D. et al. Genome–wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Cui, X., Rouhani, F. N., Hawari, F. & Levine, S. J. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J. Biol. Chem. 278, 28677–28685 (2003).

    Article  CAS  Google Scholar 

  28. 28

    Thomas, G. P. & Brown, M. A. Genetics and genomics of ankylosing spondylitis. Immunol. Rev. 233, 162–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Layh-Schmitt, G. & Colbert, R. A. The interleukin-23/interleukin-17 axis in spondyloarthritis. Curr. Opin. Rheumatol. 20, 392–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Genovese, M. C. et al. LY2439821, a humanized anti-IL-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis. Arthritis Rheum. 62, 929–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Khan, M. A. Epidemiology of HLA-B27 and arthritis. Clin. Rheumatol. 15 (Suppl. 1), 10–12 (1996).

    Article  Google Scholar 

  33. 33

    Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).

    Article  CAS  Google Scholar 

  34. 34

    Milia, A. F. et al. HLA-B27 transgenic rat: an animal model mimicking gut and joint involvement in human spondyloarthritides. Ann. NY Acad. Sci. 1173, 570–574 (2009).

    Article  CAS  Google Scholar 

  35. 35

    Taurog, J. D. et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol. Rev. 169, 209–223 (1999).

    Article  CAS  Google Scholar 

  36. 36

    Brown, M. A. Genetics and the pathogenesis of ankylosing spondylitis. Curr. Opin. Rheumatol. 21, 318–323 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Khan, M. A. In HLA System in Biology and Medicine: A Resource Book (ed. Mehra, N.) 422–446 (Jaypee Brothers Medical Publishers, New Delhi, 2010).

    Google Scholar 

  38. 38

    Reveille, J. D. Recent studies on the genetic basis of ankylosing spondylitis. Curr. Rheumatol. Rep. 11, 340–348 (2009).

    Article  CAS  Google Scholar 

  39. 39

    Reveille, J. D. & Maganti, R. M. Subtypes of HLA-B27: history and implications in the pathogenesis of ankylosing spondylitis. Adv. Exp. Med. Biol. 649, 159–176 (2009).

    Article  CAS  Google Scholar 

  40. 40

    Gorga, J. C., Madden, D. R., Prendergast, J. K., Wiley, D. C. & Strominger, J. L. Crystallization and preliminary X-ray diffraction studies of the human major histocompatibility antigen HLA-B27. Proteins 12, 87–90 (1992).

    Article  CAS  Google Scholar 

  41. 41

    Madden, D. R., Gorga, J. C., Strominger, J. L. & Wiley, D. C. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70, 1035–1048 (1992).

    Article  CAS  Google Scholar 

  42. 42

    Van Kaer, L. Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens 60, 1–9 (2002).

    Article  CAS  Google Scholar 

  43. 43

    Zhao, L., Fong, Y., Granfors, K., Gu, J. & Yu, D. Identification of cytokines that might enhance the promoter activity of HLA-B27. J. Rheumatol. 35, 862–868 (2008).

    CAS  PubMed  Google Scholar 

  44. 44

    Chapman, D. C. & Williams, D. B. ER quality control in the biogenesis of MHC class I molecules. Semin. Cell. Dev. Biol. doi: 10.1016/j.semcdb.2009.12.013.

  45. 45

    Kanaseki, T., Blanchard, N., Hammer, G. E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 25, 795–806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Yan, J. et al. In vivo role of ER–associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Turner, M. J., Delay, M. L., Bai, S., Klenk, E. & Colbert, R. A. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56, 215–223 (2007).

    Article  PubMed  Google Scholar 

  48. 48

    Colbert, R. A., DeLay, M. L., Layh–Schmitt, G. & Sowders, D. P. HLA-B27 misfolding and spondyloarthropathies. Prion 3, 15–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Smith, J. A. et al. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur. J. Immunol. 38, 1194–1203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Dong, W. et al. Upregulation of 78-kDa glucose-regulated protein in macrophages in peripheral joints of active ankylosing spondylitis. Scand. J. Rheumatol. 37, 427–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Gu, J. et al. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J. Rheumatol. 29, 2159–2164 (2002).

    CAS  PubMed  Google Scholar 

  52. 52

    Young, A. C., Zhang, W., Sacchettini, J. C. & Nathenson, S. G. MHC class I—peptide interactions and TCR recognition. Cancer Surv. 22, 17–36 (1995).

    CAS  PubMed  Google Scholar 

  53. 53

    López de Castro, J. A. HLA-B27 and the pathogenesis of spondyloarthropathies. Immunol. Lett. 108, 27–33 (2007).

    Article  CAS  Google Scholar 

  54. 54

    Atagunduz, P. et al. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 52, 892–901 (2005).

    Article  CAS  Google Scholar 

  55. 55

    Fiorillo, M. T., Maragno, M., Butler, R., Dupuis, M. L. & Sorrentino, R. CD8(+) T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J. Clin. Invest. 106, 47–53 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Zou, J., Appel, H., Rudwaleit, M., Thiel, A. & Sieper, J. Analysis of the CD8+ T cell response to the G1 domain of aggrecan in ankylosing spondylitis. Ann. Rheum. Dis. 64, 722–729 (2005).

    Article  CAS  Google Scholar 

  57. 57

    Kollnberger, S. & Bowness, P. The role of B27 heavy chain dimer immune receptor interactions in spondyloarthritis. Adv. Exp. Med. Biol. 649, 277–285 (2009).

    Article  CAS  Google Scholar 

  58. 58

    Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Kollnberger, S. et al. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J. Immunol. 173, 1699–1710 (2004).

    Article  CAS  Google Scholar 

  60. 60

    Kollnberger, S. et al. Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide. Eur. J. Immunol. 37, 1313–1322 (2007).

    Article  CAS  Google Scholar 

  61. 61

    Chan, A. T., Kollnberger, S. D., Wedderburn, L. R. & Bowness, P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 52, 3586–3595 (2005).

    Article  CAS  Google Scholar 

  62. 62

    Ben Dror, L., Barnea, E., Beer, I., Mann, M. & Admon, A. The HLA-B*2705 peptidome. Arthritis Rheum. 62, 420–429 (2010).

    CAS  PubMed  Google Scholar 

  63. 63

    López de Castro, J. A. The HLA-B27 peptidome: building on the cornerstone. Arthritis Rheum. 62, 316–319 (2010).

    Article  CAS  Google Scholar 

  64. 64

    Hülsmeyer, M. et al. Dual, HLA-B27 subtype-dependent conformation of a self-peptide. J. Exp. Med. 199, 271–281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Rückert, C. et al. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J. Biol. Chem. 281, 2306–2316 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Baeten, D., Kruithof, E., Breban, M. & Tak, P. P. Spondylarthritis in the absence of B lymphocytes. Arthritis Rheum. 58, 730–733 (2008).

    Article  CAS  Google Scholar 

  67. 67

    Nocturne, G. et al. Rituximab in the spondyloarthropathies: data of eight patients followed up in the French Autoimmunity and Rituximab (AIR) registry. Ann. Rheum. Dis. 69, 471–472 (2010).

    Article  CAS  Google Scholar 

  68. 68

    Milia, A. F. et al. Evidence for the prevention of enthesitis in HLA-B27/hbeta2m transgenic rats treated with a monoclonal antibody against TNFalpha. J. Cell. Mol. Med. doi: 10.1111/j.1582–49342009.00984.x.

  69. 69

    Breban, M. et al. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J. Immunol. 156, 794–803 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Breban, M., Hammer, R. E., Richardson, J. A. & Taurog, J. D. Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment. J. Exp. Med. 178, 1607–1616 (1993).

    Article  CAS  Google Scholar 

  71. 71

    May, E. et al. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J. Immunol. 170, 1099–1105 (2003).

    Article  CAS  Google Scholar 

  72. 72

    Taurog, J. D. et al. Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).

    Article  CAS  Google Scholar 

  73. 73

    Dhaenens, M. et al. Dendritic cells from spondylarthritis-prone HLA-B27-transgenic rats display altered cytoskeletal dynamics, class II major histocompatibility complex expression, and viability. Arthritis Rheum. 60, 2622–2632 (2009).

    Article  CAS  Google Scholar 

  74. 74

    Fert, I. et al. Correlation between dendritic cell functional defect and spondylarthritis phenotypes in HLA-B27/HUMAN beta2-microglobulin-transgenic rat lines. Arthritis Rheum. 58, 3425–3429 (2008).

    Article  CAS  Google Scholar 

  75. 75

    Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Benjamin, M. & McGonagle, D. Basic concepts of enthesis biology and immunology. J. Rheumatol. Suppl. 83, 12–13 (2009).

    Article  Google Scholar 

  77. 77

    Benjamin, M. et al. Microdamage and altered vascularity at the enthesis–bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheum. 56, 224–233 (2007).

    Article  CAS  Google Scholar 

  78. 78

    Mathieu, A. et al. The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: a unifying hypothesis. Autoimmun. Rev. 8, 420–425 (2009).

    Article  CAS  Google Scholar 

  79. 79

    Rashid, T. & Ebringer, A. Ankylosing spondylitis is linked to Klebsiella––the evidence. Clin. Rheumatol. 26, 858–864 (2007).

    Article  Google Scholar 

  80. 80

    Hannu, T., Inman, R., Granfors, K. & Leirisalo-Repo, M. Reactive arthritis or post-infectious arthritis? Best Pract. Res. Clin. Rheumatol. 20, 419–433 (2006).

    Article  Google Scholar 

  81. 81

    Appel, H. et al. Use of HLA-B27 tetramers to identify low-frequency antigen-specific T cells in Chlamydia-triggered reactive arthritis. Arthritis Res. Ther. 6, R521–R534 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Inman, R. D. Mechanisms of disease: infection and spondyloarthritis. Nat. Clin. Pract. Rheumatol. 2, 163–169 (2006).

    Article  Google Scholar 

  83. 83

    Braun, J. et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 38, 499–505 (1995).

    Article  CAS  Google Scholar 

  84. 84

    Smolen, J. S. et al. Radiographic changes in rheumatoid arthritis patients attaining different disease activity states with methotrexate monotherapy and infliximab plus methotrexate: the impacts of remission and tumour necrosis factor blockade. Ann. Rheum. Dis. 68, 823–827 (2009).

    Article  CAS  Google Scholar 

  85. 85

    Lories, R. J., Derese, I., de Bari, C. & Luyten, F. P. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum. 56, 489–497 (2007).

    Article  PubMed  Google Scholar 

  86. 86

    Maksymowych, W. P. Disease modification in ankylosing spondylitis. Nat. Rev. Rheumatol. 6, 75–81 (2010).

    Article  PubMed  Google Scholar 

  87. 87

    Neidhart, M. et al. Expression of cathepsin K and matrix metalloproteinase 1 indicate persistent osteodestructive activity in long-standing ankylosing spondylitis. Ann. Rheum. Dis. 68, 1334–1339 (2009).

    Article  CAS  Google Scholar 

  88. 88

    Walsh, N. C. & Gravallese, E. M. Bone remodeling in rheumatic disease: a question of balance. Immunol. Rev. 233, 301–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Lories, R. J., Luyten, F. P. & de Vlam, K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res. Ther. 11, 221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Lories, R. J. & Luyten, F. P. Bone morphogenetic protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev. 16, 287–298 (2005).

    Article  CAS  Google Scholar 

  91. 91

    Winkler, D. G. et al. Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J. Biol. Chem. 279, 36293–36298 (2004).

    Article  CAS  Google Scholar 

  92. 92

    van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Schett, G., Zwerina, J. & David, J. P. The role of Wnt proteins in arthritis. Nat. Clin. Pract. Rheumatol. 4, 473–480 (2008).

    Article  CAS  Google Scholar 

  94. 94

    Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Lories, R. J., Derese, I. & Luyten, F. P. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J. Clin. Invest. 115, 1571–1579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).

    Article  PubMed  Google Scholar 

  97. 97

    Daoussis, D. et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 62, 150–158 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Drs. J. A. López de Castro, P. T. Fan, J. Louie and M. B. Frank for their comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tam, L., Gu, J. & Yu, D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol 6, 399–405 (2010). https://doi.org/10.1038/nrrheum.2010.79

Download citation

Further reading