Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?

Abstract

Spurred on by ever-evolving developments in analytical methodology, the microbiome, and the gut microbiome in particular, has become the hot topic in biomedical research. Ingenious experiments in animal models have revealed the extent to which the gut microbiota sustains health and how its disruption might contribute to disease pathogenesis. Not surprisingly, associations between the microbiota and disease states in humans have been the subject of considerable interest and many links proposed. However, with rare exceptions, the incrimination of an altered microbiota in disease pathogenesis seems premature at this time given our incomplete understanding of the composition of the gut microbiota in health and the effect of many confounding factors in the interpretation of supposedly abnormal microbial signatures. Future studies must account for these variables and the bidirectionality of host–microorganism interactions in health and disease. In this Perspectives, the status of microbiota signatures in the clinical arena (for facilitating diagnosis or refining prognosis) will be critically assessed and guidance toward future progress provided.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Factors that can influence the composition and function of the human gut microbiota.
Figure 2: The microbiome–gut–brain axis.
Figure 3: The 'leaky gut' hypothesis.

References

  1. Blaser, M. J. The microbiome revolution. J. Clin. Invest. 124, 4162–4165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iqbal, S. & Quigley, E. M. M. Progress in our understanding of the gut microbiome: implications for the clinician. Curr. Gastroenterol. Rep. 18, 49 (2016).

    Article  PubMed  Google Scholar 

  3. O'Toole, P. W. & Flemer, B. From culture to high-throughput sequencing and beyond: a layperson's guide to the “omics” and diagnostic potential of the microbiome. Gastroenterol. Clin. North Am. 46, 9–17 (2017).

    Article  PubMed  Google Scholar 

  4. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parashar, A. & Udayabanu, M. Gut microbiota: implications in Parkinson's disease. Parkinsonism Relat. Disord. http://dx.doi.org/10.1016/j.parkreldis.2017.02.002 (2017).

  6. Vuong, H. E. & Hsiao, E. Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81, 411–423 (2017).

    Article  PubMed  Google Scholar 

  7. Paun, A., Yau, C. & Danska, J. S. The influence of the microbiome on type 1 diabetes. J. Immunol. 198, 590–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Stiemsma, L. T. & Turvey, S. E. Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin. Immunol. 13, 3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marasco, G. et al. Gut microbiota and celiac disease. Dig. Dis. Sci. 61, 1461–1472 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marques, T. M. et al. Programming infant gut microbiota: influence of dietary and environmental factors. Curr. Opin. Biotechnol. 21, 149–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. McGuire, M. K. & McGuire, M. A. Human milk: mother nature's prototypical probiotic food? Adv. Nutr. 6, 112–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Engen, P. A., Green, S. J., Voigt, R. M., Forsyth, C. B. & Keshavarzian, A. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res. 7, 223–236 (2015).

    Google Scholar 

  23. Vangay, P., Ward, T., Gerber, J. S. & Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 17, 553–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doré, J. & Blottière, H. The influence of diet on the gut microbiota and its consequences for health. Curr. Opin. Biotechnol. 32, 195–199 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McIntosh, K. et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut http://dx.doi.org/10.1136/gutjnl-2015-311339 (2016).

  29. Heinritz, S. N. et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS ONE 11, e0154329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonder, M. J. et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 8, 45 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGuire, M. K. & McGuire, M. A. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr. Opin. Biotechnol. 44, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, H. et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front. Microbiol. 7, 1619 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devkota, S. Prescription drugs obscure microbiome analyses. Science 351, 452–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dabrowska, K. & Witkiewicz, W. Correlations of host genetics and gut microbiome composition. Front. Microbiol. 7, 1–7 (2016).

    Article  Google Scholar 

  39. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Palma, G., Collins, S. M., Bercik, P. & Verdu, E. F. The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J. Physiol. 592, 2989–2997 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalal, S. R. & Chang, E. B. The microbial basis of inflammatory bowel diseases. J. Clin. Invest. 124, 4190–4196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Surana, N. K. & Kasper, D. L. Deciphering the tête-à-tête between the microbiota and the immune system. J. Clin. Invest. 124, 4197–4203 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carmody, R. N. & Turnbaugh, P. J. Host–microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J. Clin. Invest. 124, 4173–4181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kelly, J. R. et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9, 392 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Seekatz, A. M. & Young, V. B. Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diarrhea. J. Infect. Dis. 197, 435–438 (2008).

    Article  PubMed  Google Scholar 

  50. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Peek, R. M. Jr, Fiske, C. & Wilson, K. T. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol. Rev. 90, 831–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Bianco, A. M., Girardelli, M. & Tommasini, A. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J. Gastroenterol. 21, 12296–12310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Villani, A. C. et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology 138, 1502–1513 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Quigley, E. M., Stanton, C. & Murphy, E. F. The gut microbiota and the liver. Pathophysiological and clinical implications. J. Hepatol. 58, 1020–1027 (2013).

    Article  PubMed  Google Scholar 

  55. Koutsounas, I., Kaltsa, G., Siakavellas, S. I. & Bamias, G. Markers of bacterial translocation in end-stage liver disease. World J. Hepatol. 7, 2264–2273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Galipeau, H. J. & Verdu, E. F. The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol. Motil. 28, 957–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Weber, C. R. Dynamic properties of the tight junction barrier. Ann. NY Acad. Sci. 1257, 77–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Quigley, E. M. Leaky gut — concept or clinical entity? Curr. Opin. Gastroenterol. 32, 74–79 (2016).

    Article  PubMed  Google Scholar 

  59. Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Jarocki, P., Podles´ny, M., Glibowski, P. & Targon´ski, Z. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium. PLoS ONE 9, e114379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, T. & Chiang, J. Y. Bile acids as metabolic regulators. Curr. Opin. Gastroenterol. 31, 159–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rao, A. S. et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis. Gastroenterology 139, 1549–1558 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Alrefai, W. A. et al. Taurodeoxycholate modulates apical Cl/OH exchange activity in Caco2 cells. Dig. Dis. Sci. 52, 1270–1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Guo, C., Chen, W.-D. & Wang, Y.-D. TGR5, not only a metabolic regulator. Front. Physiol. 7, 646 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Soldavini, J. & Kaunitz, J. D. Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig. Dis. Sci. 58, 2756–2766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cushing, K., Alvarado, D. M. & Ciorba, M. A. Butyrate and mucosal inflammation: new scientific evidence supports clinical observation. Clin. Transl Gastroenterol. 6, e108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. Cell 166, 1103–1116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vernocchi, P., Del Chierico, F. & Putignani, L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front. Microbiol. 7, 1144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Altmann, F. et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624. PLoS ONE 11, e0162983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schiavi, E. et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl. Environ. Microbiol. 82, 7185–7196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Phear, E. A. & Ruebner, B. The in vitro production of ammonium and amines by intestinal bacteria in relation to nitrogen toxicity as a factor in hepatic coma. Br. J. Exp. Pathol. 37, 253–262 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bajaj, J. S. et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE 8, e60042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Browne, H. P. et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Simpson, H. L. & Campbell, B. J. Review article: dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 42, 158–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Codling, C., O'Mahony, L., Shanahan, F., Quigley, E. M. & Marchesi, J. R. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig. Dis. Sci. 55, 392–397 (2010).

    Article  PubMed  Google Scholar 

  77. Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G799–G807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ringel, Y. et al. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes 6, 173–181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bagdasarian, N., Rao, K. & Malani, P. N. Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313, 398–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

    Article  PubMed  Google Scholar 

  82. Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell. Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kelly, J. R. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016).

    Article  PubMed  Google Scholar 

  84. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167, 1469–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shen, T. C. et al. Engineering the gut microbiota to treat hyperammonemia. J. Clin. Invest. 125, 2841–2850 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Anderson, E. L. et al. A robust ambient temperature collection and stabilization strategy: enabling worldwide functional studies of the human microbiome. Sci. Rep. 6, 31731 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn M. M. Quigley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quigley, E. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?. Nat Rev Gastroenterol Hepatol 14, 315–320 (2017). https://doi.org/10.1038/nrgastro.2017.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing