Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders

Abstract

The intestine harbours a complex array of microorganisms collectively known as the gut microbiota. The past two decades have witnessed increasing interest in studying the gut microbiota in health and disease, largely driven by rapid innovation in high-throughput multi-omics technologies. As a result, microbial dysbiosis has been linked to many human pathologies, including type 2 diabetes mellitus and inflammatory bowel disease. Integrated analyses of multi-omics data, including metagenomics and metabolomics along with measurements of host response and cataloguing of bacterial isolates, have identified many bacteria and bacterial products that are correlated with disease. Nevertheless, insight into the mechanisms through which microbes affect intestinal health requires going beyond correlation to causation. Current understanding of the contribution of the gut microbiota to disease causality remains limited, largely owing to the heterogeneity of microbial community structures, interindividual differences in disease evolution and incomplete understanding of the mechanisms that integrate microbiota-derived signals into host signalling pathways. In this Review, we provide a broad insight into the microbiome signatures linked to inflammatory and metabolic disorders, discuss outstanding challenges in this field and propose applications of multi-omics technologies that could lead to an improved mechanistic understanding of microorganism–host interactions.

Key points

  • Several commonalities exist between inflammatory bowel disease (IBD) and type 2 diabetes mellitus (T2DM), two multifactorial diseases that show a pattern of increasing global incidence following industrialization.

  • Altered gut bacterial composition and changes in host processing of bacteria-derived metabolites are implicated in IBD and T2DM and provide a shared underlying pathogenetic mechanism.

  • A causal link between dysbiotic microbial communities and IBD or T2DM has been established through gnotobiotic mouse experiments and integrative multi-omics studies.

  • Challenges in disease-specific biomarker discovery include determining the causality of observed changes, understanding their functional redundancy in disease mechanisms and the geographic and ethnic heterogeneity of gut microbiota.

  • Big data refinement, testing and validation of specific bacterial strains, their encoded genes and metabolic byproducts are necessary to identify disease biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial risk signatures in the gut microbiomes of patients with IBD or T2DM.
Fig. 2: Overlapping global risk profiles in IBD and T2DM.
Fig. 3: Gut microbiome signature discovery in IBD and T2DM.

Similar content being viewed by others

References

  1. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    Article  PubMed  Google Scholar 

  5. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article  PubMed  Google Scholar 

  6. Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    Article  PubMed  Google Scholar 

  7. Chakaroun, R. M., Massier, L. & Kovacs, P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients 12, 1082 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  8. Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Lange, K. M., Moutsianas, L. & Lee, J. C. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Billings, L. K. & Florez, J. C. The genetics of type 2 diabetes: what have we learned from GWAS? Ann. NY Acad. Sci. 1212, 59–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, S. K. et al. Genome-wide association study of Crohn’s disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 63, 80–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, M. et al. Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet 387, 251–272 (2016).

    Article  PubMed  Google Scholar 

  14. Momozawa, Y. et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 9, 2427 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Qi, Q., Wang, X., Strizich, G. & Wang, T. Genetic determinants of type 2 diabetes in Asians. Int. J. Diabetol. Vasc. Dis. Res. https://doi.org/10.19070/2328-353X-SI01001 (2015).

  16. Yilmaz, B. et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 25, 323–336 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reitmeier, S. et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28, 258–272.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Metwaly, A. et al. Integrated microbiota and metabolite profiles link Crohn’s disease to sulfur metabolism. Nat. Commun. 11, 4322 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Round, J. L. & Mazmanian, S. K. The gut microbiome shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jurjus, A. et al. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: the links. BBA Clin. 5, 16–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Verdugo-Meza, A., Ye, J., Dadlani, H., Ghosh, S. & Gibson, D. L. Connecting the dots between inflammatory bowel disease and metabolic syndrome: a focus on gut-derived metabolites. Nutrients 12, 1434 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  25. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, H. et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front. Cell. Infect. Microbiol. 9, 455 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costello, S. P. et al. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment. Pharmacol. Ther. 46, 213–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Paramsothy, S., Kamm, M. & Kaakoush, N. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

    Article  PubMed  Google Scholar 

  31. Gupta, A. & Khanna, S. Fecal microbiota transplantation. JAMA 318, 102 (2017).

    Article  PubMed  Google Scholar 

  32. Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272–1279 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. van Lier, Y. F. et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci. Transl Med. 12, eaaz8926 (2020).

    Article  PubMed  Google Scholar 

  35. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    Article  PubMed  Google Scholar 

  36. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).

    Article  PubMed  Google Scholar 

  37. Sood, A. et al. Acceptability, tolerability, and safety of fecal microbiota transplantation in patients with active ulcerative colitis (AT&S Study). J. Gastroenterol. Hepatol. 35, 418–424 (2020).

    Article  PubMed  Google Scholar 

  38. Xiang, L. et al. Efficacy of faecal microbiota transplantation in Crohn’s disease: a new target treatment? Microb. Biotechnol. 13, 760–769 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502–512 (2020).

    Article  PubMed  CAS  Google Scholar 

  40. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schirmer, M. et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course. Cell Host Microbe 24, 600–610.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sokol, H. & Seksik, P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr. Opin. Gastroenterol. 26, 327–331 (2010).

    Article  PubMed  Google Scholar 

  45. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79–R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vila, A. V. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl Med. 10, eaap8914 (2019).

    Article  CAS  Google Scholar 

  48. Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D’Haens, G. R. et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114, 262–267 (1998).

    Article  PubMed  Google Scholar 

  50. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Perencevich, M. & Burakoff, R. Use of antibiotics in the treatment of inflammatory bowel disease. Inflamm. Bowel Dis. 12, 651–664 (2006).

    Article  PubMed  Google Scholar 

  52. Hörmannsperger, G., Schaubeck, M. & Haller, D. Intestinal microbiota in animal models of inflammatory diseases. ILAR J. 56, 179–191 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Ahmed, M., Metwaly, A. & Haller, D. Modeling microbe-host interaction in the pathogenesis of Crohn’s disease. Int. J. Med. Microbiol. 311, 151489 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell. Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schaubeck, M. et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Zhong, H. et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naive type 2 diabetics. EBioMedicine 47, 373–383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Shin, N.-R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Org, E. et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25, 1558–1569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Gilijamse, P. W. et al. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 6, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  73. Califf, R. M. Biomarker definitions and their applications. Exp. Biol. Med. 243, 213–221 (2018).

    Article  CAS  Google Scholar 

  74. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127, 412–421 (2004).

    Article  PubMed  Google Scholar 

  75. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).

    Article  PubMed  Google Scholar 

  76. Fang, X. et al. Metagenomics-based, strain-level analysis of Escherichia coli from a time-series of microbiome samples from a Crohn’s disease patient. Front. Microbiol. 9, 2559 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int. J. Med. Microbiol. 304, 464–475 (2014).

    Article  PubMed  Google Scholar 

  81. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    Article  PubMed  Google Scholar 

  82. Sarrabayrouse, G. et al. Fungal and bacterial loads: noninvasive inflammatory bowel disease biomarkers for the clinical setting. mSystems 6, e01277-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  PubMed  CAS  Google Scholar 

  85. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 7, 887–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Clooney, A. G. et al. Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut 70, 499–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He, Y. et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 6, 172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, F. et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 66, 485–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Chávez-Carbajal, A. et al. Characterization of the gut microbiota of individuals at different T2D stages reveals a complex relationship with the host. Microorganisms 8, 94 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  94. Li, Q. et al. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci. Rep. 10, 5450 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ahmad, A. et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE 14, e0226372 (2020).

    Article  CAS  Google Scholar 

  96. Lopez-Siles, M. et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 78, 420–428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 52, 1615–1620 (2002).

    CAS  PubMed  Google Scholar 

  98. Moossavi, S. The necessity for an Iranian gut microbiome initiative. Middle East J. Dig. Dis. 6, 109–110 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  100. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    Article  PubMed  Google Scholar 

  102. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Jacobs, J. P. et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell. Mol. Gastroenterol. Hepatol. 2, 750–766 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kolho, K.-L., Pessia, A., Jaakkola, T., de Vos, W. M. & Velagapudi, V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J. Crohns Colitis 11, 321–334 (2017).

    Article  PubMed  Google Scholar 

  106. Guasch-Ferré, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tam, Z. Y. et al. Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Sci. Rep. 7, 4392 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Urpi-Sarda, M. et al. Metabolomics for biomarkers of type 2 diabetes mellitus: advances and nutritional intervention trends. Curr. Cardiovasc. Risk Rep. 9, 12 (2015).

    Article  Google Scholar 

  109. Preter, V. D. et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut 64, 447–458 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Santoru, M. L. et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 7, 9523 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ni, J. et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci. Transl Med. 9, eaah6888 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Marchesi, J. R. et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6, 546–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Jansson, J. et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 4, e6386 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Le Gall, G. et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 10, 4208–4218 (2011).

    Article  PubMed  CAS  Google Scholar 

  115. Bain, J. R. et al. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58, 2429–2443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Menni, C. et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62, 4270–4276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Batch, B. C. et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 62, 961–969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Würtz, P. et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36, 648–655 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Salihovic, S. et al. Non-targeted urine metabolomics and associations with prevalent and incident type 2 diabetes. Sci. Rep. 10, 16474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang-Sattler, R. et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nikolaus, S. et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153, 1504–1516.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, T. et al. Tryptophan predicts the risk for future type 2 diabetes. PLoS ONE 11, e0162192 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hisamatsu, T. et al. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS ONE 7, e31131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  128. Sorgdrager, F. J. H., Naudé, P. J. W., Kema, I. P., Nollen, E. A. & De Deyn, P. P. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front. Immunol. 10, 2565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tillin, T. et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent Revisited) Study. Diabetologia 58, 968–979 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schoepfer, A. M. et al. Fecal calprotectin correlates more closely with the simple endoscopic score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am. J. Gastroenterol. 105, 162–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Lewis, J. D. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology 140, 1817–1826.e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Sipponen, T. & Kolho, K.-L. Fecal calprotectin in diagnosis and clinical assessment of inflammatory bowel disease. Scand. J. Gastroenterol. 50, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl Med. 10, eaap8914 (2018).

    Article  PubMed  CAS  Google Scholar 

  134. Dubinsky, V. et al. Dysbiosis in metabolic genes of the gut microbiomes of patients with an ileo-anal pouch resembles that observed in Crohn’s disease. mSystems 6, e00984-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Long, J. et al. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: a systematic review and meta-analysis. BMC Endocr. Disord. 20, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, Y. et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 59, 2349–2359 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Buttó, L. F., Schaubeck, M. & Haller, D. Mechanisms of microbe-host interaction in Crohn’s disease: dysbiosis vs. pathobiont selection. Front. Immunol. 6, 555 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Jochum, L. & Stecher, B. Label or concept — what is a pathobiont? Trends Microbiol. 28, 789–792 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Buttó, L. F. & Haller, D. Dysbiosis in Crohn’s disease — joint action of stochastic injuries and focal inflammation in the gut. Gut Microbes 8, 53–58 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  CAS  Google Scholar 

  143. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Arrieta, M., Sadarangani, M., Brown, E. M., Russell, S. L. & Nimmo, M. A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes 7, 342–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Blanton, L.V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    Article  PubMed  CAS  Google Scholar 

  146. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression towards type 1 diabetes. Cell Host Microbe 17, 260–273 (2016).

    Article  CAS  Google Scholar 

  147. Steck, N. et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141, 959–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Lengfelder, I. et al. Complex bacterial consortia reprogram the colitogenic activity of Enterococcus faecalis in a gnotobiotic mouse model of chronic, immune-mediated colitis. Front. Immunol. 10, 1420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, S. C., Tonkonogy, S. L., Karrasch, T., Jobin, C. & Balfour Sartor, R. Dual-association of gnotobiotic IL-10–/– mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm. Bowel Dis. 13, 1457–1466 (2007).

    Article  PubMed  Google Scholar 

  150. Eun, C. S. et al. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10–/– mice. Infect. Immun. 82, 2239–2246 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar typhimurium. Nat. Microbiol. 2, 16215 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    Article  PubMed  Google Scholar 

  153. Rehman, A. et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 65, 238–248 (2016).

    Article  PubMed  Google Scholar 

  154. Turnbaugh, P. J. & Gordon, J. I. The core gut microbiome, energy balance and obesity. J. Physiol. 587, 4153–4158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, K. et al. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J. 10, 321–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Vester-Andersen, M. K. et al. Increased abundance of proteobacteria in aggressive Crohn’s disease seven years after diagnosis. Sci. Rep. 9, 13473 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kishikawa, T. et al. A metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology. Front. Cell. Infect. Microbiol. 10, 585973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Doumatey, A. P. et al. Gut microbiome profiles are associated with type 2 diabetes in urban Africans. Front. Cell. Infect. Microbiol. 10, 63 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Peters, B. A. et al. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 8, 9749 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 395357507 (SFB 1371, Microbiome Signatures) — and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 964590.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and D.H. contributed equally to all aspects of the article. In addition, S.R. researched data for the article, contributed substantially to discussion of its content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Haller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Herbert Tilg, Chaysavanh Manichanh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Microbiome

All the microorganisms, their genomes and the surrounding host-shaped environmental conditions of a given habitat. The gut microbiome can be characterized through the application of metagenomics, metabolomics, metatranscriptomics and metaproteomics combined with clinical or environmental metadata.

Microbiota

The microorganisms (bacteria, fungi, archaea and viruses) of a defined environment.

Microbiome signatures

Unique patterns of microbiome configuration that can stratify defined physiological and pathological conditions and can be used to predict the risk of disease development or progression.

Pathobionts

Microorganisms that are linked to chronic inflammatory conditions but are harmless to the host under normal conditions.

Faecal microbiota transplantation

(FMT). A treatment based on transfer of microorganisms from the stool of a healthy donor into a patient’s digestive system.

Dysbiosis

(Also known as pathobiome). An altered microbial community composition that affects the host immune response and leads to the emergence and outbreak of pathogens.

Specificity

The proportion of individuals who genuinely do not have the disease or condition and receive negative test results.

Sensitivity

The proportion of individuals who genuinely have the disease or condition and receive positive test results.

Diagnostic biomarkers

Characteristics that are directly linked to the aetiology of the disease such as elevated blood glucose concentration (which is diagnostic of type 2 diabetes mellitus) and markers that show a strong correlation with inflammation in inflammatory bowel disease (such as faecal calprotectin levels).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat Rev Gastroenterol Hepatol 19, 383–397 (2022). https://doi.org/10.1038/s41575-022-00581-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00581-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research