Gastroesophageal reflux disease—from reflux episodes to mucosal inflammation

Abstract

Gastroesophageal reflux disease (GERD) affects 20–30% of the population in Western countries, and is one of the most common clinical problems in daily practice. GERD-associated functional and structural abnormalities are caused by recurrent exposure of the esophagus to acidic and nonacidic refluxate of gastric contents (containing duodenal and intestinal proteases as well as acid and gastric pepsin) from the stomach. Major progress has been made in the understanding of the molecular pathogenesis of GERD-associated mucosal inflammation, suggesting a complex and multifactorial pathogenesis and immune-mediated effects. This Review summarizes the complexity of mucosal pathogenesis, including microscopic changes, mucosal inflammation and GERD-specific molecular mediators, in the context of the clinical features and pathophysiological characteristics of GERD. The abnormal exposure of the esophagus to luminal contents leads to chronic mucosal inflammation that is characterized by the release of IL-8 specifically, as well as other proinflammatory mediators, from the esophageal mucosa. Evidence from animal studies indicates a stepwise inflammatory response by the epithelium, which attracts immune effector cells to infiltrate the mucosa. From bench to bedside, these novel molecular findings might provide new treatment options beyond current acid-suppressive therapy and the principle of inhibition of transient lower esophageal sphincter relaxation.

Key Points

  • GERD-associated mucosal inflammation is characterized by epithelial release of IL-8 and other proinflammatory markers

  • PAR2 expression is upregulated in patients with GERD and induced by acid conditions in cell-culture models; PAR2 activation leads to epithelial IL-8 release and contributes to the pathogenesis of GERD

  • Structural abnormalities and microscopic changes in GERD are characterized by papillary elongation, basal cell hyperplasia, dilated intercellular spaces and an infiltrate of immune cells, and can even be identified using light microscopy

  • Beyond PPI therapy, new pharmacological targets include mechanisms related to transient lower esophageal sphincter relaxation and mechanisms involved in symptom perception (TRPV1, cannabionoid receptors)

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The inflammatory changes that occur in GERD pathogenesis.

References

  1. 1

    Badreddine, R. J. & Wang, K. K. Barrett esophagus: an update. Nat. Rev. Gastroenterol. Hepatol. 7, 369–378 (2010).

    PubMed  Article  Google Scholar 

  2. 2

    Odze, R. D. Barrett esophagus: histology and pathology for the clinician. Nat. Rev. Gastroenterol. Hepatol. 6, 478–490 (2009).

    PubMed  Article  Google Scholar 

  3. 3

    Dent, J., el-Serag, H. B., Wallander, M. A. & Johansson, S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 54, 710–717 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    el-Serag, H. B. Time trends of gastroesophageal reflux disease: a systematic review. Clin. Gastroenterol. Hepatol. 5, 17–26 (2007).

    PubMed  Article  Google Scholar 

  5. 5

    Wiklund, I. Review of the quality of life and burden of illness in gastroesophageal reflux disease. Dig. Dis. 22, 108–114 (2004).

    PubMed  Article  Google Scholar 

  6. 6

    Kulig, M. et al. Quality of life in relation to symptoms in patients with gastro-oesophageal reflux disease-- an analysis based on the ProGERD initiative. Aliment. Pharmacol. Ther. 18, 767–776 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Koelz, H. R., Blum, A. L. & Modlin, I. M. Costs of gerd: facts and fiction. Gastroenterology 125, 981–982 (2003).

    PubMed  Article  Google Scholar 

  8. 8

    Dent, J. et al. Accuracy of the diagnosis of GORD by questionnaire, physicians and a trial of proton pump inhibitor treatment: the Diamond Study. Gut 59, 714–721 (2010).

    PubMed  Article  Google Scholar 

  9. 9

    Savarino, V., Savarino, E., Parodi, A. & Dulbecco, P. Functional heartburn and non-erosive reflux disease. Dig. Dis. 25, 172–174 (2007).

    PubMed  Article  Google Scholar 

  10. 10

    Locke, G. R. III, Talley, N. J., Fett, S. L., Zinsmeister, A. R. & Melton, L. J. 3rd. Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology 112, 1448–1456 (1997).

    PubMed  Article  Google Scholar 

  11. 11

    Neumann, H., Monkemuller, K., Kandulski, A. & Malfertheiner, P. Dyspepsia and IBS symptoms in patients with NERD, ERD and Barrett's esophagus. Dig. Dis. 26, 243–247 (2008).

    PubMed  Article  Google Scholar 

  12. 12

    Galmiche, J. P. et al. Functional esophageal disorders. Gastroenterology 130, 1459–1465 (2006).

    PubMed  Article  Google Scholar 

  13. 13

    Vela, M. F., Craft, B. M., Sharma, N., Freeman, J. & Hazen-Martin, D. Refractory heartburn: comparison of intercellular space diameter in documented GERD vs. functional heartburn. Am. J. Gastroenterol. 106, 844–850 (2011).

    PubMed  Article  Google Scholar 

  14. 14

    Ronkainen, J. et al. High prevalence of gastroesophageal reflux symptoms and esophagitis with or without symptoms in the general adult Swedish population: a Kalixanda study report. Scand. J. Gastroenterol. 40, 275–285 (2005).

    PubMed  Article  Google Scholar 

  15. 15

    Sharma, P. et al. The development and validation of an endoscopic grading system for Barrett's esophagus: the Prague C & M criteria. Gastroenterology. 131, 1392–1399 (2006).

    PubMed  Article  Google Scholar 

  16. 16

    Jankowski, J. A., Provenzale, D. & Moayyedi, P. Esophageal adenocarcinoma arising from Barrett's metaplasia has regional variations in the west. Gastroenterology 122, 588–590 (2002).

    PubMed  Article  Google Scholar 

  17. 17

    Yousef, F. et al. The incidence of esophageal cancer and high-grade dysplasia in Barrett's esophagus: a systematic review and meta-analysis. Am. J. Epidemiol. 168, 237–249 (2008).

    PubMed  Article  Google Scholar 

  18. 18

    Labenz, J. et al. Prospective follow-up data from the ProGERD study suggest that GERD is not a categorial disease. Am. J. Gastroenterol. 101, 2457–2462 (2006).

    PubMed  Article  Google Scholar 

  19. 19

    Malfertheiner, P. et al. Evolution of gastroesophageal reflux disease (GERD) over 5 years under routine medical care—the ProGERD study. Aliment. Pharmacol. Ther. (in press).

  20. 20

    Orenstein, S. R., Shalaby, T. M., Kelsey, S. F. & Frankel, E. Natural history of infant reflux esophagitis: symptoms and morphometric histology during one year without pharmacotherapy. Am. J. Gastroenterol. 101, 628–640 (2006).

    PubMed  Article  Google Scholar 

  21. 21

    Sherman, P. M. et al. A global, evidence-based consensus on the definition of gastroesophageal reflux disease in the pediatric population. Am. J. Gastroenterol. 104, 1278–1295 (2009).

    PubMed  Article  Google Scholar 

  22. 22

    Vakil, N., van Zanten, S. V., Kahrilas, P., Dent, J. & Jones, R. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am. J. Gastroenterol. 101, 1900–1920 (2006).

    PubMed  Article  Google Scholar 

  23. 23

    Sifrim, D. & Holloway, R. Transient lower esophageal sphincter relaxations: how many or how harmful? Am. J. Gastroenterol. 96, 2529–2532 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Jacobson, B. C., Somers, S. C., Fuchs, C. S., Kelly, C. P. & Camargo, C. A. Jr. Body-mass index and symptoms of gastroesophageal reflux in women. N. Engl. J. Med. 354, 2340–2348 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Hampel, H., Abraham, N. S. & el-Serag, H. B. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann. Intern. Med. 143, 199–211 (2005).

    PubMed  Article  Google Scholar 

  26. 26

    Barlow, W. J. & Orlando, R. C. The pathogenesis of heartburn in nonerosive reflux disease: a unifying hypothesis. Gastroenterology 128, 771–778 (2005).

    PubMed  Article  Google Scholar 

  27. 27

    Modlin, I. M. et al. Diagnosis and management of non-erosive reflux disease - the Vevey NERD Consensus Group. Digestion 80, 74–88 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Kahrilas, P. J. & Smout, A. J. Esophageal disorders. Am. J. Gastroenterol. 105, 747–756 (2010).

    PubMed  Article  Google Scholar 

  29. 29

    Dean, B. B., Gano, A. D. Jr, Knight, K., Ofman, J. J. & Fass, R. Effectiveness of proton pump inhibitors in nonerosive reflux disease. Clin. Gastroenterol. Hepatol. 2, 656–664 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Fass, R. & Sifrim, D. Management of heartburn not responding to proton pump inhibitors. Gut 58, 295–309 (2009).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Smout, A. J. The patient with GORD and chronically recurrent problems. Best Pract. Res. Clin. Gastroenterol. 21, 365–378 (2007).

    PubMed  Article  Google Scholar 

  32. 32

    Smith, J. L., Opekun, A. R., Larkai, E. & Graham, D. Y. Sensitivity of the esophageal mucosa to pH in gastroesophageal reflux disease. Gastroenterology 96, 683–689 (1989).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Martinez, S. D., Malagon, I. B., Garewal, H. S., Cui, H. & Fass, R. Non-erosive reflux disease (NERD)--acid reflux and symptom patterns. Aliment. Pharmacol. Ther. 17, 537–545 (2003).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Sifrim, D., Castell, D., Dent, J. & Kahrilas, P. J. Gastro-oesophageal reflux monitoring: review and consensus report on detection and definitions of acid, non-acid, and gas reflux. Gut 53, 1024–1031 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Agrawal, A. et al. Symptoms with acid and nonacid reflux may be produced by different mechanisms. Dis. Esophagus 22, 467–470 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Vela, M. F. et al. Simultaneous intraesophageal impedance and pH measurement of acid and nonacid gastroesophageal reflux: effect of omeprazole. Gastroenterology 120, 1599–1606 (2001).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Sifrim, D. et al. Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pH-impedance recordings. Gastroenterology 120, 1588–1598 (2001).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Bredenoord, A. J., Weusten, B. L., Curvers, W. L., Timmer, R. & Smout, A. J. Determinants of perception of heartburn and regurgitation. Gut 55, 313–318 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Mainie, I. et al. Acid and non-acid reflux in patients with persistent symptoms despite acid suppressive therapy: a multicentre study using combined ambulatory impedance-pH monitoring. Gut 55, 1398–1402 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Sharma, N., Agrawal, A., Freeman, J., Vela, M. F. & Castell, D. An analysis of persistent symptoms in acid-suppressed patients undergoing impedance-pH monitoring. Clin. Gastroenterol. Hepatol. 6, 521–524 (2008).

    PubMed  Article  Google Scholar 

  41. 41

    Hemmink, G. J. et al. Esophageal pH-impedance monitoring in patients with therapy-resistant reflux symptoms: 'on' or 'off' proton pump inhibitor? Am. J. Gastroenterol. 103, 2446–2453 (2008).

    PubMed  Article  Google Scholar 

  42. 42

    Furuta, T. et al. Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. 72, 453–460 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Furuta, T. et al. CYP2C19 genotype is associated with symptomatic recurrence of GERD during maintenance therapy with low-dose lansoprazole. Eur. J. Clin. Pharmacol. 65, 693–698 (2009).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Fass, R., Shapiro, M., Dekel, R. & Sewell, J. Systematic review: proton-pump inhibitor failure in gastro-oesophageal reflux disease—where next? Aliment. Pharmacol. Ther. 22, 79–94 (2005).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Ismail-Beigi, F., Horton, P. F. & Pope, C. E. Histological consequences of gastroesophageal reflux in man. Gastroenterology 58, 163–174 (1970).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Hopwood, D., Milne, G. & Logan, K. R. Electron microscopic changes in human oesophageal epithelium in oesophagitis. J. Pathol. 129, 161–167 (1979).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Tobey, N. A., Carson, J. L., Alkiek, R. A. & Orlando, R. C. Dilated intercellular spaces: a morphological feature of acid reflux—damaged human esophageal epithelium. Gastroenterology 111, 1200–1205 (1996).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Tobey, N. A. et al. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am. J. Gastroenterol. 99, 13–22 (2004).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Vieth, M. et al. Radial distribution of dilated intercellular spaces of the esophageal squamous epithelium in patients with reflux disease exhibiting discrete endoscopic lesions. Dig. Dis. 22, 208–212 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Vieth, M. et al. What parameters are relevant for the histological diagnosis of gastroesophageal reflux disease without Barrett's mucosa? Dig. Dis. 22, 196–201 (2004).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Zentilin, P. et al. Carditis in patients with gastro-oesophageal reflux disease: results of a controlled study based on both endoscopy and 24-h oesophageal pH monitoring. Aliment. Pharmacol. Ther. 19, 1285–1292 (2004).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Fiocca, R. et al. Development of consensus guidelines for the histologic recognition of microscopic esophagitis in patients with gastroesophageal reflux disease: the Esohisto project. Hum. Pathol. 41, 223–231 (2010).

    PubMed  Article  Google Scholar 

  53. 53

    Yerian, L. et al. Refinement and reproducibility of histologic criteria for the assessment of microscopic lesions in patients with gastroesophageal reflux disease: the esohisto project. Dig. Dis. Sci. 56, 2656–2665 (2011).

    PubMed  Article  Google Scholar 

  54. 54

    Fiocca, R. et al. Long-term outcome of microscopic esophagitis in chronic GERD patients treated with esomeprazole or laparoscopic antireflux surgery in the LOTUS trial. Am. J. Gastroenterol. 105, 1015–1023 (2010).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Galmiche, J. P. et al. Laparoscopic antireflux surgery vs esomeprazole treatment for chronic GERD: the LOTUS randomized clinical trial. JAMA 305, 1969–1977 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Farre, R. et al. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut 57, 1366–1374 (2008).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Tobey, N. A., Gambling, T. M., Vanegas, X. C., Carson, J. L. & Orlando, R. C. Physicochemical basis for dilated intercellular spaces in non-erosive acid-damaged rabbit esophageal epithelium. Dis. Esophagus 21, 757–764 (2008).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Carney, C. N., Orlando, R. C., Powell, D. W. & Dotson, M. M. Morphologic alterations in early acid-induced epithelial injury of the rabbit esophagus. Lab. Invest. 45, 198–208 (1981).

    CAS  PubMed  Google Scholar 

  59. 59

    Farre, R. et al. Acid and weakly acidic solutions impair mucosal integrity of distal exposed and proximal non-exposed human oesophagus. Gut 59, 164–169 (2010).

    PubMed  Article  Google Scholar 

  60. 60

    Farre, R. et al. Evaluation of oesophageal mucosa integrity by the intraluminal impedance technique. Gut 60, 885–892 (2011).

    PubMed  Article  Google Scholar 

  61. 61

    Haggitt, R. C. Histopathology of reflux-induced esophageal and supraesophageal injuries. Am. J. Med. 108 (Suppl. 4a), 109S–111S (2000).

    PubMed  Article  Google Scholar 

  62. 62

    Odze, R. D. Unraveling the mystery of the gastroesophageal junction: a pathologist's perspective. Am. J. Gastroenterol. 100, 1853–1867 (2005).

    PubMed  Article  Google Scholar 

  63. 63

    Tummala, V., Barwick, K. W., Sontag, S. J., Vlahcevic, R. Z. & McCallum, R. W. The significance of intraepithelial eosinophils in the histologic diagnosis of gastroesophageal reflux. Am. J. Clin. Pathol. 87, 43–48 (1987).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Livstone, E. M., Sheahan, D. G. & Behar, J. Studies of esophageal epithelial cell proliferation in patients with reflux esophagitis. Gastroenterology 73, 1315–1319 (1977).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Tobey, N. A. et al. The role of pepsin in acid injury to esophageal epithelium. Am. J. Gastroenterol. 96, 3062–3070 (2001).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Orlando, R. C. Pathophysiology of gastroesophageal reflux disease. J. Clin. Gastroenterol. 42, 584–588 (2008).

    PubMed  Article  Google Scholar 

  67. 67

    Fitzgerald, R. C. Inflammation at the neo squamocolumnar junction in Barrett's oesophagus. Gut 47, 870 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Fitzgerald, R. C. et al. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50, 451–459 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Kandulski, A. et al. Chronic mucosal inflammation of the gastric cardia in gastroesophageal reflux disease is not regulated by FOXP3-expressing T cells. Dig. Dis. Sci. 54, 1940–1946 (2009).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Isomoto, H. et al. Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitis. Am. J. Gastroenterol. 98, 551–556 (2003).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Yoshida, N. et al. Interleukin-8 production via protease-activated receptor 2 in human esophageal epithelial cells. Int. J. Mol. Med. 19, 335–340 (2007).

    CAS  PubMed  Google Scholar 

  72. 72

    Monkemuller, K. et al. Interleukin-1β and interleukin-8 expression correlate with the histomorphological changes in esophageal mucosa of patients with erosive and non-erosive reflux disease. Digestion 79, 186–195 (2009).

    PubMed  Article  CAS  Google Scholar 

  73. 73

    Yamaguchi, T. et al. Cytokine-induced neutrophil accumulation in the pathogenesis of acute reflux esophagitis in rats. Int. J. Mol. Med. 16, 71–77 (2005).

    CAS  PubMed  Google Scholar 

  74. 74

    Rieder, F. et al. Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities. Gastroenterology 132, 154–165 (2007).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Cheng, L. et al. HCl-induced inflammatory mediators in cat esophageal mucosa and inflammatory mediators in esophageal circular muscle in an in vitro model of esophagitis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1307–G1317 (2006).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Isomoto, H. et al. Enhanced expression of interleukin-8 and activation of nuclear factor kappa-B in endoscopy-negative gastroesophageal reflux disease. Am. J. Gastroenterol. 99, 589–597 (2004).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Oh, D. S. et al. Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett's esophagus with antireflux surgery. Arch. Surg. 142, 554–559 (2007).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Mukaida, N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L566–L577 (2003).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Hamaguchi, M. et al. Increased expression of cytokines and adhesion molecules in rat chronic esophagitis. Digestion 68, 189–197 (2003).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Cheng, L. et al. Acid-induced release of platelet-activating factor by human esophageal mucosa induces inflammatory mediators in circular smooth muscle. J. Pharmacol. Exp. Ther. 319, 117–126 (2006).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Cheng, L. et al. In vitro model of acute esophagitis in the cat. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G860–G869 (2005).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Rieder, F., Biancani, P., Harnett, K., Yerian, L. & Falk, G. W. Inflammatory mediators in gastroesophageal reflux disease: impact on esophageal motility, fibrosis, and carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G571–G581 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Kandulski, A. et al. Proteinase-activated receptor-2 in the pathogenesis of gastroesophageal reflux disease. Am. J. Gastroenterol. 105, 1934–1943 (2010).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Souza, R. F. et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology 137, 1776–1784 (2009).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Yoshida, N. et al. Interleukin-8 expression in the esophageal mucosa of patients with gastroesophageal reflux disease. Scand. J. Gastroenterol. 39, 816–822 (2004).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 6, 151–158 (2000).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Soreide, K. Proteinase-activated receptor 2 (PAR-2) in gastrointestinal and pancreatic pathophysiology, inflammation and neoplasia. Scand. J. Gastroenterol. 43, 902–909 (2008).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Scarborough, R. M. et al. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J. Biol. Chem. 267, 13146–13149 (1992).

    CAS  PubMed  Google Scholar 

  89. 89

    Dery, O., Corvera, C. U., Steinhoff, M. & Bunnett, N. W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. 274, C1429–C1452 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Cenac, N. et al. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol. 161, 1903–1915 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Vergnolle, N. et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat. Med. 7, 821–826 (2001).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Coelho, A. M., Vergnolle, N., Guiard, B., Fioramonti, J. & Bueno, L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology 122, 1035–1047 (2002).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Jacob, C. et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and β-arrestins. J. Biol. Chem. 280, 31936–31948 (2005).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Soderholm, J. D. Stress-related changes in oesophageal permeability: filling the gaps of GORD? Gut 56, 1177–1180 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95

    Souza, R. F. Bringing GERD management up to PAR-2. Am. J. Gastroenterol. 105, 1944–1946 (2010).

    PubMed  Article  Google Scholar 

  96. 96

    Naito, Y. et al. Role of pancreatic trypsin in chronic esophagitis induced by gastroduodenal reflux in rats. J. Gastroenterol. 41, 198–208 (2006).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Amadesi, S. et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J. Neurosci. 24, 4300–4312 (2004).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Bhat, Y. M. & Bielefeldt, K. Capsaicin receptor (TRPV1) and non-erosive reflux disease. Eur. J. Gastroenterol. Hepatol. 18, 263–270 (2006).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Matthews, P. J. et al. Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur. J. Gastroenterol. Hepatol. 16, 897–902 (2004).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Guarino, M. P. et al. Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol. Motil. 22, 746–751, e219 (2010).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Cortright, D. N. & Szallasi, A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur. J. Biochem. 271, 1814–1819 (2004).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Kindt, S., Vos, R., Blondeau, K. & Tack, J. Influence of intra-oesophageal capsaicin instillation on heartburn induction and oesophageal sensitivity in man. Neurogastroenterol. Motil. 21, 1032–e82 (2009).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Yiangou, Y. et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357, 1338–1339 (2001).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Cheng, L. et al. HCl-activated neural and epithelial vanilloid receptors (TRPV1) in cat esophageal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G135–G143 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Ma, J., Harnett, K. M., Behar, J., Biancani, P. & Cao, W. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G233–G240 (2010).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Shieh, K. R. et al. Evidence for neurotrophic factors associating with TRPV1 gene expression in the inflamed human esophagus. Neurogastroenterol. Motil. 22, 971–7, e252 (2010).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Koek, G. H., Sifrim, D., Lerut, T., Janssens, J. & Tack, J. Effect of the GABAB agonist baclofen in patients with symptoms and duodeno-gastro-oesophageal reflux refractory to proton pump inhibitors. Gut 52, 1397–1402 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Vela, M. F., Tutuian, R., Katz, P. O. & Castell, D. O. Baclofen decreases acid and non-acid post-prandial gastro-oesophageal reflux measured by combined multichannel intraluminal impedance and pH. Aliment. Pharmacol. Ther. 17, 243–251 (2003).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Gerson, L. B. et al. Arbaclofen placarbil decreases postprandial reflux in patients with gastroesophageal reflux disease. Am. J. Gastroenterol. 105, 1266–1275 (2010).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Boeckxstaens, G. E. et al. Effects of lesogaberan on reflux and lower esophageal sphincter function in patients with gastroesophageal reflux disease. Gastroenterology 139, 409–417 (2010).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Zerbib, F. et al. Randomised clinical trial: effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 33, 911–921 (2011).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Zerbib, F., Keywood, C. & Strabach, G. Efficacy, tolerability and pharmacokinetics of a modified release formulation of ADX10059, a negative allosteric modulator of metabotropic glutamate receptor 5: an esophageal pH-impedance study in healthy subjects. Neurogastroenterol. Motil. 22, 859–865, e231 (2010).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Keywood, C., Wakefield, M. & Tack, J. A proof-of-concept study evaluating the effect of ADX10059, a metabotropic glutamate receptor-5 negative allosteric modulator, on acid exposure and symptoms in gastro-oesophageal reflux disease. Gut 58, 1192–1199 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Ruth, M., Hamelin, B., Rohss, K. & Lundell, L. The effect of mosapride, a novel prokinetic, on acid reflux variables in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 12, 35–40 (1998).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Ruth, M., Finizia, C., Cange, L. & Lundell, L. The effect of mosapride on oesophageal motor function and acid reflux in patients with gastro-oesophageal reflux disease. Eur. J. Gastroenterol. Hepatol. 15, 1115–1121 (2003).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Cho, Y. K. et al. The effect of mosapride on esophageal motility and bolus transit in asymptomatic volunteers. J. Clin. Gastroenterol. 40, 286–292 (2006).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Lehmann, A. et al. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 123, 1129–1134 (2002).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Partosoedarso, E. R., Abrahams, T. P., Scullion, R. T., Moerschbaecher, J. M. & Hornby, P. J. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J. Physiol. 550, 149–158 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Beaumont, H. et al. Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br. J. Pharmacol. 156, 153–162 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Scarpellini, E. et al. Effect of rimonabant on oesophageal motor function in man. Aliment. Pharmacol. Ther. 33, 730–737 (2011).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Broekaert, D., Fischler, B., Sifrim, D., Janssens, J. & Tack, J. Influence of citalopram, a selective serotonin reuptake inhibitor, on oesophageal hypersensitivity: a double-blind, placebo-controlled study. Aliment. Pharmacol. Ther. 23, 365–370 (2006).

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Krarup, A. L. et al. Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain. Aliment. Pharmacol. Ther. 33, 1113–1122 (2011).

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

A. Kandulski researched data for the article. Both authors contributed equally to discussions of content, writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Peter Malfertheiner.

Ethics declarations

Competing interests

P. Malfertheiner declares that he has received grant or research support from Movetis and Novartis. A. Kandulski declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kandulski, A., Malfertheiner, P. Gastroesophageal reflux disease—from reflux episodes to mucosal inflammation. Nat Rev Gastroenterol Hepatol 9, 15–22 (2012). https://doi.org/10.1038/nrgastro.2011.210

Download citation

Further reading