Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus

Key Points

  • Nitric oxide (NO) is a highly soluble and membrane-permeable neurotransmitter formed enzymatically by NO synthase (NOS) from l-arginine in equimolar amounts with l-citrulline

  • The hypothalamus is the single most important integrator of autonomic and endocrine regulation in the body, and neurons expressing neuronal NOS (nNOS) have an active role in this process

  • The activity of nNOS is tightly regulated by hormone-dependent post-transcriptional events, which include physical association with the N-methyl-D-aspartate (NMDA) receptor (the main stimulatory calcium influx pathway), and Ser1412 phosphorylation

  • In hypothalamic areas where nNOS neuron cell bodies are densely packed, NO could act as a volume transmitter to facilitate synchronous activity of specific neuroendocrine neuronal populations including gonadotropin-releasing hormone neurons

  • nNOS is hailed as a genetic risk factor for some noncommunicable diseases in which postnatal brain development (and its hormonal programming) is increasingly recognized as being a key susceptibility period.

Abstract

The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility. The putative involvement and therapeutic potential of NO in the pathophysiology of brain diseases, for which hormonal imbalances during postnatal development could be risk factors, is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splice variants of nNOS and the main activatory mechanism of nNOSα.
Figure 2: The NO–cGMP signalling pathway.
Figure 3: The hypothalamic–pituitary–gonadal axis.
Figure 4: Ovarian cycle changes proposed to regulate nNOS activity in the hypothalamic preoptic area.
Figure 5: Model of NO volume transmission in the preoptic region and its impact on GnRH neuronal function.

Similar content being viewed by others

References

  1. Arnold, W. P., Mittal, C. K., Katsuki, S. & Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. USA 74, 3203–3207 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miki, N., Kawabe, Y. & Kuriyama, K. Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 75, 851–856 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Garthwaite, J., Charles, S. L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Bredt, D. S. et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Bredt, D. S. & Snyder, S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl Acad. Sci. USA 87, 682–685 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giuili, G., Luzi, A., Poyard, M. & Guellaen, G. Expression of mouse brain soluble guanylyl cyclase and NO synthase during ontogeny. Brain Res. Dev. Brain Res. 81, 269–283 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, H. H. et al. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 40, 1439–1456 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Southam, E. & Garthwaite, J. The nitric oxide–cyclic GMP signalling pathway in rat brain. Neuropharmacology 32, 1267–1277 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Vincent, S. R. & Kimura, H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755–784 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. De Vente, J. et al. Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 87, 207–241 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Newton, D. C. et al. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5′-untranslated region leader exon. J. Biol. Chem. 278, 636–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y. et al. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc. Natl Acad. Sci. USA 96, 12150–12155 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Tochio, H., Zhang, Q., Mandal, P., Li, M. & Zhang, M. Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat. Struct. Biol. 6, 417–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Adak, S. et al. Neuronal nitric-oxide synthase mutant (Ser-1412 → Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J. Biol. Chem. 276, 1244–1252 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Rameau, G. A. et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J. Neurosci. 27, 3445–3455 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hayashi, Y. et al. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J. Biol. Chem. 274, 20597–20602 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Komeima, K., Hayashi, Y., Naito, Y. & Watanabe, Y. Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase IIα through Ser847 phosphorylation in NG108-15 neuronal cells. J. Biol. Chem. 275, 28139–28143 (2000).

    CAS  PubMed  Google Scholar 

  19. Rameau, G. A., Chiu, L. Y. & Ziff, E. B. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J. Biol. Chem. 279, 14307–14314 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 27, 2783–2802 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eliasson, M. J., Blackshaw, S., Schell, M. J. & Snyder, S. H. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc. Natl Acad. Sci. USA 94, 3396–3401 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Putzke, J., Seidel, B., Huang, P. L. & Wolf, G. Differential expression of alternatively spliced isoforms of neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptors (NMDAR) in knockout mice deficient in nNOS α (nNOS α(δ/δ) mice). Brain Res. Mol. Brain Res. 85, 13–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Brenman, J. E., Xia, H., Chao, D. S., Black, S. M. & Bredt, D. S. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci. 19, 224–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Catania, M. V., Aronica, E., Yankaya, B. & Troost, D. Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J. Neurosci. 21, RC148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward, M. E. et al. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J. Clin. Invest. 115, 3128–3139 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Daniel, H., Levenes, C. & Crepel, F. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21, 401–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Toda, N. & Okamura, T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol. Rev. 55, 271–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Garthwaite, J. From synaptically localized to volume transmission by nitric oxide. J. Physiol. 594, 9–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ignarro, L. J., Ross, G. & Tillisch, J. Pharmacology of endothelium-derived nitric oxide and nitrovasodilators. West. J. Med. 154, 51–62 (1991).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Baltrons, M. A. & Garcia, A. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells. J. Neurochem. 73, 2149–2157 (1999).

    CAS  PubMed  Google Scholar 

  31. Baltrons, M. A., Boran, M. S., Pifarre, P. & Garcia, A. Regulation and function of cyclic GMP-mediated pathways in glial cells. Neurochem. Res. 33, 2427–2435 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, J., Markerink-van Ittersum, M., Steinbusch, H. W. & De Vente, J. Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19, 286–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Spicer, R. D. Infantile hypertrophic pyloric stenosis: a review. Br. J. Surg. 69, 128–135 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Gyurko, R., Leupen, S. & Huang, P. L. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143, 2767–2774 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism — pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    Article  PubMed  Google Scholar 

  37. Prevot, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1395–1439 (Elsevier, 2015).

    Book  Google Scholar 

  38. Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Tobet, S. et al. Brain sex differences and hormone influences: a moving experience? J. Neuroendocrinol. 21, 387–392 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Israel, J. M., Cabelguen, J. M., Le Masson, G., Oliet, S. H. & Ciofi, P. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction. Nat. Commun. 5, 3285 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Hatton, G. I. Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Theodosis, D. T., Poulain, D. A. & Oliet, S. H. Activity-dependent structural and functional plasticity of astrocyte–neuron interactions. Physiol. Rev. 88, 983–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Giacobini, P. et al. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol. 12, e1001808 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Prevot, V. et al. Function-related structural plasticity of the GnRH system: a role for neuronal–glial–endothelial interactions. Front. Neuroendocrinol. 31, 241–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Grattan, D. R. 60 years of neuroendocrinology: the hypothalamo–prolactin axis. J. Endocrinol. 226, T101–T122 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Calabrese, V. et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Branco, L. G., Soriano, R. N. & Steiner, A. A. Gaseous mediators in temperature regulation. Compr. Physiol. 4, 1301–1338 (2014).

    Article  PubMed  Google Scholar 

  51. Rivier, C. Role of hypothalamic corticotropin-releasing factor in mediating alcohol-induced activation of the rat hypothalamic–pituitary–adrenal axis. Front. Neuroendocrinol. 35, 221–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z. & Zhou, C. Hypothalamic glucose sensing: making ends meet. Front. Syst. Neurosci. 8, 236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bellefontaine, N. et al. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93, 74–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Srisawat, R. et al. Nitric oxide and the oxytocin system in pregnancy. J. Neurosci. 20, 6721–6727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Donato, J. Jr, Frazao, R., Fukuda, M., Vianna, C. R. & Elias, C. F. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 151, 5415–5427 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zimmerman, C. A. et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537, 680–684 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J. Neurosci. 34, 15306–15318 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sutton, A. K., Myers, M. G. Jr & Olson, D. P. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol. 78, 207–221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gonzalez-Flores, O. & Etgen, A. M. The nitric oxide pathway participates in estrous behavior induced by progesterone and some of its ring A-reduced metabolites. Horm. Behav. 45, 50–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Herbison, A. E. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 399–468 (Elsevier, 2015).

    Book  Google Scholar 

  62. Christian, C. A. & Moenter, S. M. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr. Rev. 31, 544–577 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tena-Sempere, M. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1605–1636 (Elsevier, 2015).

    Book  Google Scholar 

  64. Hazlerigg, D. & Simonneaux, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1575–1604 (Elsevier, 2015).

    Book  Google Scholar 

  65. Bellefontaine, N. & Elias, C. F. Minireview: metabolic control of the reproductive physiology: insights from genetic mouse models. Horm. Behav. 66, 7–14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Evans, J. J. & Anderson, G. M. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum. Reprod. Update 18, 313–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. d'Anglemont de Tassigny, X. et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl Acad. Sci. USA 104, 10714–10719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kirilov, M. et al. Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nat. Commun. 4, 2492 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Wintermantel, T. M. et al. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52, 271–280 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Agnati, L. F., Zoli, M., Stromberg, I. & Fuxe, K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69, 711–726 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Gundersen, V., Storm-Mathisen, J. & Bergersen, L. H. Neuroglial transmission. Physiol. Rev. 95, 695–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Bonavera, J. J., Sahu, A., Kalra, P. S. & Kalra, S. P. Evidence in support of nitric oxide (NO) involvement in the cyclic release of prolactin and LH surges. Brain Res. 660, 175–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Moretto, M., Lopez, F. J. & Negro-Vilar, A. Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology 133, 2399–2402 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Rettori, V. et al. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl Acad. Sci. USA 90, 10130–10134 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aguan, K., Mahesh, V. B., Ping, L., Bhat, G. & Brann, D. W. Evidence for a physiological role for nitric oxide in the regulation of the LH surge: effect of central administration of antisense oligonucleotides to nitric oxide synthase. Neuroendocrinology 64, 449–455 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. d'Anglemont de Tassigny, X. et al. Coupling of neuronal nitric oxide synthase to NMDA receptors via postsynaptic density-95 depends on estrogen and contributes to the central control of adult female reproduction. J. Neurosci. 27, 6103–6114 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Clasadonte, J., Poulain, P., Beauvillain, J. C. & Prevot, V. Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: a possible local synchronizing signal. Endocrinology 149, 587–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Herbison, A. E., Simonian, S. X., Norris, P. J. & Emson, P. C. Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J. Neuroendocrinol. 8, 73–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Hanchate, N. K. et al. Kisspeptin–GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J. Neurosci. 32, 932–945 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Herde, M. K., Geist, K., Campbell, R. E. & Herbison, A. E. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood–brain barrier. Endocrinology 152, 3832–3841 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Maggi, A., Ciana, P., Belcredito, S. & Vegeto, E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu. Rev. Physiol. 66, 291–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Simerly, R. B. Wired on hormones: endocrine regulation of hypothalamic development. Curr. Opin. Neurobiol. 15, 81–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Hara, Y., Waters, E. M., McEwen, B. S. & Morrison, J. H. Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol. Rev. 95, 785–807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nugent, B. M. et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18, 690–697 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chachlaki, K. & Prevot, V. Coexpression profiles reveal hidden gene networks. Proc. Natl Acad. Sci. USA 113, 2563–2565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahfouz, A. et al. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proc. Natl Acad. Sci. USA 113, 2738–2743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sarkar, D. K. & Fink, G. Luteinizing hormone releasing factor in pituitary stalk plasma from long-term ovariectomized rats: effects of steroids. J. Endocrinol. 86, 511–524 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. Akama, K. T. & McEwen, B. S. Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J. Neurosci. 23, 2333–2339 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Weiner, C. P. et al. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc. Natl Acad. Sci. USA 91, 5212–5216 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Woolley, C. S. & McEwen, B. S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sato, S., Braham, C. S., Putnam, S. K. & Hull, E. M. Neuronal nitric oxide synthase and gonadal steroid interaction in the MPOA of male rats: co-localization and testosterone-induced restoration of copulation and nNOS-immunoreactivity. Brain Res. 1043, 205–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Scordalakes, E. M., Shetty, S. J. & Rissman, E. F. Roles of estrogen receptor α and androgen receptor in the regulation of neuronal nitric oxide synthase. J. Comp. Neurol. 453, 336–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Chachlaki, K. et al. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J. Comp. Neurol. http://dx.doi.org/10.1002/cne.24257 (2017).

  99. Levine, J. E. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 399–468 (Elsevier, 2015).

    Google Scholar 

  100. d'Anglemont de Tassigny, X., Campagne, C., Steculorum, S. & Prevot, V. Estradiol induces physical association of neuronal nitric oxide synthase with NMDA receptor and promotes nitric oxide formation via estrogen receptor activation in primary neuronal cultures. J. Neurochem. 109, 214–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Parkash, J. et al. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle. Endocrinology 151, 2723–2735 (2010).

    Article  PubMed  CAS  Google Scholar 

  102. Urbanski, H. F. & Ojeda, S. R. A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126, 1774–1776 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. d'Anglemont de Tassigny, X., Ackroyd, K. J., Chatzidaki, E. E. & Colledge, W. H. Kisspeptin signaling is required for peripheral but not central stimulation of gonadotropin-releasing hormone neurons by NMDA. J. Neurosci. 30, 8581–8590 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bhat, G. K. et al. Histochemical localization of nitric oxide neurons in the hypothalamus: association with gonadotropin-releasing hormone neurons and co-localization with N-methyl-D-aspartate receptors. Neuroendocrinology 62, 187–197 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Chakraborty, T. R., Ng, L. & Gore, A. C. Colocalization and hormone regulation of estrogen receptor α and N-methyl-D-aspartate receptor in the hypothalamus of female rats. Endocrinology 144, 299–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Brann, D. W. & Mahesh, V. B. Endogenous excitatory amino acid involvement in the preovulatory and steroid-induced surge of gonadotropins in the female rat. Endocrinology 128, 1541–1547 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Cheong, R. Y., Czieselsky, K., Porteous, R. & Herbison, A. E. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J. Neurosci. 35, 14533–14543 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Herde, M. K., Iremonger, K. J., Constantin, S. & Herbison, A. E. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Marshall, C. J., Desroziers, E., McLennan, T. & Campbell, R. E. Defining subpopulations of arcuate nucleus GABA neurons in male, female and prenatally androgenized female mice. Neuroendocrinology http://dx.doi.org/10.1159/000452105 (2016).

  110. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A. & Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Mason, A. J. et al. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234, 1366–1371 (1986).

    Article  CAS  PubMed  Google Scholar 

  112. Berghard, A., Hagglund, A. C., Bohm, S. & Carlsson, L. Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. FASEB J. 26, 3464–3472 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P. & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Oakley, A. E., Clifton, D. K. & Steiner, R. A. Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ciofi, P., Leroy, D. & Tramu, G. Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 141, 1731–1745 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Clarkson, J. & Herbison, A. E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817–5825 (2006).

    Article  PubMed  CAS  Google Scholar 

  118. Yip, S. H., Boehm, U., Herbison, A. E. & Campbell, R. E. Conditional viral tract tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology 156, 2582–2594 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, X. et al. Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J. Neurosci. 31, 2421–2430 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Qiu, J. et al. High frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife 5, e16246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Han, S. Y., McLennan, T., Czieselsky, K. & Herbison, A. E. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 112, 13109–13114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Campos, P. & Herbison, A. E. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 111, 18387–18392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Clarke, S. A. & Dhillo, W. S. Kisspeptin across the human lifespan:evidence from animal studies and beyond. J. Endocrinol. 229, R83–R98 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Han, S. K. et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Decourt, C. et al. A synthetic kisspeptin analog that triggers ovulation and advances puberty. Sci. Rep. 6, 26908 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Leon, S. et al. Direct actions of kisspeptins on GnRH neurons permit attainment of fertility but are insufficient to fully preserve gonadotropic axis activity. Sci. Rep. 6, 19206 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Herbison, A. E., de Tassigny, X., Doran, J. & Colledge, W. H. Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151, 312–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Pielecka-Fortuna, J., Chu, Z. & Moenter, S. M. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149, 1979–1986 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Kuiri-Hanninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic–pituitary–gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Belsham, D. D. & Mellon, P. L. Transcription factors Oct-1 and C/EBPβ (CCAAT/enhancer-binding protein-β) are involved in the glutamate/nitric oxide/cyclic-guanosine 5′-monophosphate-mediated repression of mediated repression of gonadotropin-releasing hormone gene expression. Mol. Endocrinol. 14, 212–228 (2000).

    CAS  PubMed  Google Scholar 

  134. Glanowska, K. M., Burger, L. L. & Moenter, S. M. Development of gonadotropin-releasing hormone secretion and pituitary response. J. Neurosci. 34, 15060–15069 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Choe, H. K. et al. Real-time GnRH gene transcription in GnRH promoter-driven luciferase-expressing transgenic mice: effect of kisspeptin. Neuroendocrinology 102, 194–199 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Kennedy, G. C. Interactions between feeding behavior and hormones during growth. Ann. NY Acad. Sci. 157, 1049–1061 (1969).

    Article  CAS  PubMed  Google Scholar 

  137. Biro, F. M., Khoury, P. & Morrison, J. A. Influence of obesity on timing of puberty. Int. J. Androl. 29, 272–277 (2006).

    Article  PubMed  Google Scholar 

  138. Friedman, C. I. & Kim, M. H. Obesity and its effect on reproductive function. Clin. Obstet. Gynecol. 28, 645–663 (1985).

    Article  CAS  PubMed  Google Scholar 

  139. Chehab, F. F. 20 years of leptin: leptin and reproduction: past milestones, present undertakings, and future endeavors. J. Endocrinol. 223, T37–T48 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Munzberg, H. & Morrison, C. D. Structure, production and signaling of leptin. Metabolism 64, 13–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Quennell, J. H. et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 150, 2805–2812 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sullivan, S. D., DeFazio, R. A. & Moenter, S. M. Metabolic regulation of fertility through presynaptic and postsynaptic signaling to gonadotropin-releasing hormone neurons. J. Neurosci. 23, 8578–8585 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Louis, G. W. et al. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152, 2302–2310 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Nagatani, S. et al. Evidence for GnRH regulation by leptin: leptin administration prevents reduced pulsatile LH secretion during fasting. Neuroendocrinology 67, 370–376 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Bellefontaine, N. et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J. Clin. Invest. 124, 2550–2559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Leshan, R. L. et al. Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus. J. Neurosci. 29, 3138–3147 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Langlet, F., Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Tanycyte-like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J. Comp. Neurol. 521, 3389–3405 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Prager-Khoutorsky, M. & Bourque, C. W. Anatomical organization of the rat organum vasculosum laminae terminalis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R324–R337 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Jr. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18, 820–823 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Zhang, Y. et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Martin, C. et al. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J. Neurosci. 34, 6047–6056 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Zuure, W. A., Roberts, A. L., Quennell, J. H. & Anderson, G. M. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J. Neurosci. 33, 17874–17883 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Donato, J. Jr et al. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368 (2011).

    Article  PubMed  Google Scholar 

  160. Ratra, D. V. & Elias, C. F. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J. Chem. Neuroanat. 61–62, 233–238 (2014).

  161. Lancaster, J. R. Jr. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1, 18–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Moller, M. et al. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J. Biol. Chem. 280, 8850–8854 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Agnati, L. F., Guidolin, D., Guescini, M., Genedani, S. & Fuxe, K. Understanding wiring and volume transmission. Brain Res. Rev. 64, 137–159 (2010).

    Article  PubMed  Google Scholar 

  164. Wood, J. & Garthwaite, J. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33, 1235–1244 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. Wood, K. C. et al. Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells. J. Biol. Chem. 286, 43172–43181 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Bhargava, Y. et al. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front. Mol. Neurosci. 6, 26 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hall, C. N. & Garthwaite, J. Inactivation of nitric oxide by rat cerebellar slices. J. Physiol. 577, 549–567 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Sweeney, Y., Hellgren Kotaleski, J. & Hennig, M. H. A. Diffusive homeostatic signal maintains neural heterogeneity and responsiveness in cortical networks. PLoS Comput. Biol. 11, e1004389 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Sweeney, Y. & Clopath, C. Emergent spatial synaptic structure from diffusive plasticity. Eur. J. Neurosci. 45, 1057–1067 (2016).

    Article  PubMed  Google Scholar 

  170. Israel, J. M., Oliet, S. H. & Ciofi, P. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices. Front. Neurosci. 10, 109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Marder, E., O'Leary, T. & Shruti, S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu. Rev. Neurosci. 37, 329–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest. 125, 846–858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Bakker, J. & Baum, M. J. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front. Neuroendocrinol. 29, 1–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. World Health Organization. Global status report on noncommunicable diseases 2010. WHO http://apps.who.int/iris/bitstream/10665/44579/1/9789240686458_eng.pdf (2011).

  176. Witchel, S. F. Disorders of puberty: take a good history! J. Clin. Endocrinol. Metab. 101, 2643–2646 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Patton, G. C. & Viner, R. Pubertal transitions in health. Lancet 369, 1130–1139 (2007).

    Article  PubMed  Google Scholar 

  178. Hoyt, L. T. & Falconi, A. M. Puberty and perimenopause: reproductive transitions and their implications for women's health. Soc. Sci. Med. 132, 103–112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Cohen, R. Z., Seeman, M. V., Gotowiec, A. & Kopala, L. Earlier puberty as a predictor of later onset of schizophrenia in women. Am. J. Psychiatry 156, 1059–1064 (1999).

    CAS  PubMed  Google Scholar 

  180. O'Donovan, M. C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Freudenberg, F., Alttoa, A. & Reif, A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as genetic risk factors for psychiatric disorders. Genes Brain Behav. 14, 46–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Hallak, J. E. et al. Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside: a randomized, double-blind, placebo-controlled trial. JAMA Psychiatry. 70, 668–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Shim, S., Shuman, M. & Duncan, E. An emerging role of cGMP in the treatment of schizophrenia: a review. Schizophr. Res. 170, 226–231 (2016).

    Article  PubMed  Google Scholar 

  184. Charriaut-Marlangue, C. et al. Nitric oxide signaling in the brain: a new target for inhaled nitric oxide? Ann. Neurol. 73, 442–448 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Bhatraju, P., Crawford, J., Hall, M. & Lang, J. D. Jr. Inhaled nitric oxide: current clinical concepts. Nitric Oxide 50, 114–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Ambalavanan, N. & Aschner, J. L. Management of hypoxemic respiratory failure and pulmonary hypertension in preterm infants. J. Perinatol. 36 (Suppl. 2) S20–S27 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Charriaut-Marlangue, C. et al. Inhaled nitric oxide reduces brain damage by collateral recruitment in a neonatal stroke model. Stroke 43, 3078–3084 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Pham, H. et al. Inhaled NO protects cerebral white matter in neonatal rats with combined brain and lung injury. Am. J. Respir. Crit. Care Med. 185, 897–899 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Kuiri-Hanninen, T. et al. Increased activity of the hypothalamic–pituitary–testicular axis in infancy results in increased androgen action in premature boys. J. Clin. Endocrinol. Metab. 96, 98–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Kuiri-Hanninen, T. et al. Postnatal developmental changes in the pituitary–ovarian axis in preterm and term infant girls. J. Clin. Endocrinol. Metab. 96, 3432–3439 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Back, S. A. Brain injury in the preterm infant: new horizons for pathogenesis and prevention. Pediatr. Neurol. 53, 185–192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Swamy, G. K., Ostbye, T. & Skjaerven, R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA 299, 1429–1436 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Zhong, L. R., Estes, S., Artinian, L. & Rehder, V. Cell-specific regulation of neuronal activity by endogenous production of nitric oxide. Eur. J. Neurosci. 41, 1013–1024 (2015).

    Article  PubMed  Google Scholar 

  194. Batchelor, A. M. et al. Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc. Natl Acad. Sci. USA 107, 22060–22065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Garthwaite, J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell. Biochem. 334, 221–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Gally, J. A., Montague, P. R., Reeke, G. N. Jr & Edelman, G. M. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl Acad. Sci. USA 87, 3547–3551 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Montague, P. R. & Sejnowski, T. J. The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. Learn. Mem. 1, 1–33 (1994).

    CAS  PubMed  Google Scholar 

  198. Patton, G. C. et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 387, 2423–2478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Raivio, T. et al. Reversal of idiopathic hypogonadotropic hypogonadism. N. Engl. J. Med. 357, 863–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Sidhoum, V. F. et al. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J. Clin. Endocrinol. Metab. 99, 861–870 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Fondation pour la Recherche Médicale (FRM; grant number DEQ20130326524 to V.P.), The Wellcome Trust (grant number 081512/Z/06/Z to J.G.) and a doctoral fellowship from the University of Lille School of Medicine, Lille, France (to K.C.). The authors acknowledge S. Rasika for editorial assistance with the manuscript before submission and the European consortium studying GnRH biology (COST Action BM1105) coordinated by N. Pitteloud for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.C. researched data for the article and wrote the article. J.G. made a substantial contribution to discussions about content and reviewed and/or edited the manuscript before submission. V.P. wrote the article.

Corresponding author

Correspondence to Vincent Prevot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachlaki, K., Garthwaite, J. & Prevot, V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 13, 521–535 (2017). https://doi.org/10.1038/nrendo.2017.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing