Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states

Abstract

After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multilayered organization of IGF-I actions in the adult brain supporting well-being states.
Fig. 2: Pleiotropy of IGF-I in the brain.
Fig. 3: Neuroprotection by IGF-I.
Fig. 4: Modulation of brain states by IGF-I.

Similar content being viewed by others

References

  1. Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10:68–91.

    Article  CAS  PubMed  Google Scholar 

  2. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.

    Article  CAS  PubMed  Google Scholar 

  3. LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab. 2021;52:101245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau HE, Chalasani SH. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems. Invert Neurosci. 2014;14:71–8.

  5. Wexler LR, Miller RM, Portman DS C. elegans males integrate food signals and biological sex to modulate state-dependent chemosensation and behavioral prioritization. Curr Biol. 2020;30:2695–706.

  6. Semaniuk UV, Gospodaryov DV, Feden’ko KM, Yurkevych IS, Vaiserman AM, Storey KB, et al. Insulin-like peptides regulate feeding preference and metabolism in drosophila. Front Physiol. 2018;9:1083.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fernandez AM, Hernandez E, Guerrero-Gomez D, Miranda-Vizuete A, Torres, Aleman I. A network of insulin peptides regulate glucose uptake by astrocytes: Potential new druggable targets for brain hypometabolism. Neuropharmacology. 2018;136:216–22.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Hendricks M, Cornils A, Maier W, Alcedo J, Zhang Y. Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C. elegans. Neuron. 2013;77:572–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandes de Abreu DA, Caballero A, Fardel P, Stroustrup N, Chen Z, Lee K, et al. An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genet. 2014;10:e1004225.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 C. elegans insulin-like peptides. J Biol Chem. 2018.

  11. McGaugh SE, Bronikowski AM, Kuo CH, Reding DM, Addis EA, Flagel LE, et al. Rapid molecular evolution across amniotes of the IIS/TOR network. Proc Natl Acad Sci USA. 2015;112:7055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Macqueen DJ, de la Serrana DG, Johnston IA. Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. Mol Biol Evol. 2013;30:1060–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.

    Article  CAS  PubMed  Google Scholar 

  14. Holzenberger M, Hamard G, Zaoui R, Leneuve P, Ducos B, Beccavin C, et al. Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology. 2001;142:4469–78.

    Article  CAS  PubMed  Google Scholar 

  15. Anisimov VN. Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp Gerontol. 2003;38:1041–9.

    Article  CAS  PubMed  Google Scholar 

  16. Torres Aleman I. Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol Metab Clin North Am. 2012;41:395–408.

    Article  CAS  PubMed  Google Scholar 

  17. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661–5.

    Article  CAS  PubMed  Google Scholar 

  18. Torres-Aleman I. Serum growth factors and neuroprotective surveillance. Mol Neurobiol. 2000;21:153–60.

    Article  CAS  PubMed  Google Scholar 

  19. Habas A, Hahn J, Wang X, Margeta M. Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci USA. 2013;110:18291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, et al. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67:834–46.

    Article  CAS  PubMed  Google Scholar 

  21. Chen MJ, Russo-Neustadt AA. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors. 2007;25:118–31.

    Article  CAS  PubMed  Google Scholar 

  22. Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carro E, Torres-Aleman I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharm. 2004;490:127–33.

    Article  CAS  Google Scholar 

  24. Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Brain Res Rev. 2005;50:134–41.

    Article  CAS  PubMed  Google Scholar 

  25. Carro E, Torres-Aleman I. Serum insulin-like growth factor I in brain function. Keio J Med. 2006;55:59–63.

    Article  CAS  PubMed  Google Scholar 

  26. Aleman A, Torres-Aleman I. Circulating insulin-like growth factor I and cognitive function: neuromodulation throughout the lifespan. Prog Neurobiol. 2009;89:256–65.

    Article  CAS  PubMed  Google Scholar 

  27. Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I. Dev Neurobiol. 2010;70:384–96.

    Article  CAS  PubMed  Google Scholar 

  28. Zegarra-Valdivia JA, Fernandes J, Esparza J, Suda K, de Sevilla MEF, Díaz-Pacheco S, et al. Interoceptive Information Of Physical Vigor: Orexin Neurons Gauge Circulating IGF-I For Motivational Motor Output. bioRxiv. 2021:05.25.445442.

  29. Bondy CA. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci. 1991;11:3442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adem A, Jossan SS, d’Argy R, Gillberg PG, Nordberg A, Winblad B, et al. Insulin-like growth factor 1 (IGF-1) receptors in the human brain: quantitative autoradiographic localization. Brain Res. 1989;503:299–303.

    Article  CAS  PubMed  Google Scholar 

  31. Baron-Van EA, Olichon-Berthe C, Kowalski A, Visciano G, Van OE. Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res. 1991;28:244–53.

    Article  Google Scholar 

  32. Marks JL, Porte D Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol. 1991;5:1158–68.

    Article  CAS  PubMed  Google Scholar 

  33. Ocrant I, Valentino KL, Eng LF, Hintz RL, Wilson DM, Rosenfeld RG. Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system. Endocrinology. 1988;123:1023–34.

    Article  CAS  PubMed  Google Scholar 

  34. Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA. 1993;90:7386–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res. 1994;39:117–26.

    Article  CAS  PubMed  Google Scholar 

  36. Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 2000;20:2926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist And Why Are There So Many? Front Endocrinol. 2018;9:117.

    Article  Google Scholar 

  38. Arnold PM, Ma JY, Citron BA, Festoff BW. Insulin-like growth factor binding proteins in cerebrospinal fluid during human development and aging. Biochem Biophys Res Commun. 1999;264:652–6.

    Article  CAS  PubMed  Google Scholar 

  39. Ayer-le Lievre C, Stahlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development. 1991;111:105–15.

    Article  CAS  PubMed  Google Scholar 

  40. Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature. 2016;531:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hawkes C, Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res Brain Res Rev. 2004;44:117–40.

    Article  CAS  PubMed  Google Scholar 

  42. Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ. 2021;9:e11799.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci. 2023;46:488–502.

    Article  CAS  PubMed  Google Scholar 

  45. Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, et al. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J. 2011;30:4071–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maglio LE, Noriega-Prieto JA, Maroto IB, Martin-Cortecero J, Muñoz-Callejas A, Callejo-Móstoles M, et al. IGF-1 facilitates extinction of conditioned fear. Elife. 2021;10:e67267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. Elife. 2020;9:e54781.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical role for IGF-II in memory consolidation and enhancement. Nature. 2011;469:491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolos M, LeRoith D, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry. 2007;12:1118–28.

    Article  CAS  PubMed  Google Scholar 

  50. Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993;13:2739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16:17–29.

    Article  CAS  PubMed  Google Scholar 

  52. Santi A, Genis L, Torres, Aleman I. A Coordinated Action of Blood-Borne and Brain Insulin-Like Growth Factor I in the Response to Traumatic Brain Injury. Cereb Cortex. 2018;28:2007–14.

    Article  CAS  PubMed  Google Scholar 

  53. Noriega-Prieto JA, Maglio LE, Zegarra-Valdivia JA, Pignatelli J, Fernandez AM, Martinez-Rachadell L, et al. Astrocytic IGF-IRs Induce Adenosine-Mediated Inhibitory Downregulation and Improve Sensory Discrimination. J Neurosci. 2021;41:4768–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron. 2016;89:1–15. https://doi.org/10.1016/j.neuron.2015.12.034.

    Article  CAS  Google Scholar 

  55. Trueba-Saiz A, Fernandez AM, Nishijima T, Mecha M, Santi A, Munive V, et al. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice. Endocrinology. 2017;158:349–55.

    CAS  PubMed  Google Scholar 

  56. De Magalhaes Filho CD, Kappeler L, Dupont J, Solinc J, Villapol S, Denis C, et al. Deleting IGF-1 receptor from forebrain neurons confers neuroprotection during stroke and upregulates endocrine somatotropin. J Cereb Blood Flow Metab. 2016;37:396–12.

  57. Cao P, Maximov A, Südhof TC. Activity-Dependent IGF-1 Exocytosis Is Controlled by the Ca2+-Sensor Synaptotagmin-10. Cell. 2011;145:300–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brar AK, Chernausek SD. Localization of insulin-like growth factor binding protein-4 expression in the developing and adult rat brain: analysis by in situ hybridization. J Neurosci Res. 1993;35:103–14.

    Article  CAS  PubMed  Google Scholar 

  59. Holmin S, Mathiesen T, Langmoen IA, Sandberg Nordqvist AC. Depolarization induces insulin-like growth factor binding protein-2 expression in vivo via NMDA receptor stimulation. Growth Horm IGF Res. 2001;11:399–406.

    Article  CAS  PubMed  Google Scholar 

  60. Honda M, Eriksson KS, Zhang S, Tanaka S, Lin L, Salehi A, et al. IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS ONE. 2009;4:e4254.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Naeve GS, Vana AM, Eggold JR, Verge G, Ling N, Foster AC. Expression of rat insulin-like growth factor binding protein-6 in the brain, spinal cord, and sensory ganglia. Brain Res Mol Brain Res. 2000;75:185–97.

    Article  CAS  PubMed  Google Scholar 

  62. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.

    Article  CAS  PubMed  Google Scholar 

  63. Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14:176–81.

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13:225–39.

    Article  CAS  PubMed  Google Scholar 

  65. Liu Z, Chen Z, Shang C, Yan F, Shi Y, Zhang J, et al. IGF1-dependent synaptic plasticity of mitral cells in olfactory memory during social learning. Neuron. 2017;95:106–22.e105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ueha R, Kondo K, Ueha S, Yamasoba T. Dose-dependent effects of insulin-like growth factor 1 in the aged olfactory epithelium. Front Aging Neurosci. 2018;10:385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martinez-Rachadell L, Aguilera A, Perez-Domper P, Pignatelli J, Fernandez AM, Torres-Aleman I. Cell-specific expression of insulin/insulin-like growth factor-I receptor hybrids in the mouse brain. Growth Horm IGF Res. 2019;45:25–30.

    Article  CAS  PubMed  Google Scholar 

  68. Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia. 2022;70:1455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286:1358–62.

    Article  CAS  PubMed  Google Scholar 

  70. Garwood CJ, Ratcliffe LE, Morgan SV, Simpson JE, Owens H, Vazquez-Villasenor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pang Y, Zheng B, Fan LW, Rhodes PG, Cai Z. IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia. 2007;55:1099–1107.

  72. Sun LY, D’Ercole AJ. Insulin-like growth factor-I (IGF-I) stimulates histone H3 and H4 acetylation in the brain in vivo. Endocrinology. 2006;147:5480–90.

  73. Mir S, Cai W, Carlson SW, Saatman KE, Andres DA. IGF-1 mediated Neurogenesis Involves a Novel RIT1/Akt/Sox2 Cascade. Sci Rep. 2017;7:3283.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pons S, Torres-Aleman I. Insulin-like growth factor-i stimulates dephosphorylation of ikappa b through the serine phosphatase calcineurin (Protein Phosphatase 2B). J Biol Chem. 2000;275:38620–5.

    Article  CAS  PubMed  Google Scholar 

  75. Torres-Aleman I, Villalba M, Nieto-Bona MP. Insulin-like growth factor-I modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. Neuroscience. 1998;83:321–34.

    Article  CAS  PubMed  Google Scholar 

  76. Tranque PA, Calle R, Naftolin F, Robbins R. Involvement of protein kinase-C in the mitogenic effect of insulin-like growth factor-I on rat astrocytes. Endocrinology. 1992;131:1948–54.

    Article  CAS  PubMed  Google Scholar 

  77. Ster J, Colomer C, Monzo C, Duvoid-Guillou A, Moos F, Alonso G, et al. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J Neurosci. 2005;25:2267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol. 2016;28:10.1111/jne.12433.

  79. Lopez-Lopez C, Dietrich MO, Metzger F, Loetscher H, Torres-Aleman I. Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’s disease. J Neurosci. 2007;27:824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quiroga S, Garofalo RS, Pfenninger KH. Insulin-like growth factor I receptors of fetal brain are enriched in nerve growth cones and contain a beta-subunit variant. Proc Natl Acad Sci USA. 1995;92:4309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burgess SK, Jacobs S, Cuatrecasas P, Sahyoun N. Characterization of a neuronal subtype of insulin-like growth factor I receptor. J Biol Chem. 1987;262:1618–22.

    Article  CAS  PubMed  Google Scholar 

  82. Carlberg M, Dricu A, Blegen H, Wang M, Hjertman M, Zickert P, et al. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme a reductase and cell growth. J Biol Chem. 1996;271:17453–62.

    Article  CAS  PubMed  Google Scholar 

  83. Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Ren Physiol. 2009;296:F459–69.

    Article  CAS  Google Scholar 

  84. Hurtado-Chong A, Yusta-Boyo MJ, Vergano-Vera E, Bulfone A, de PF, Vicario-Abejon C. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci. 2009;30:742–55.

    Article  PubMed  Google Scholar 

  85. Pera EM, Wessely O, Li SY, De Robertis EM. Neural and head induction by insulin-like growth factor signals. Developmental Cell. 2001;1:655–65.

    Article  CAS  PubMed  Google Scholar 

  86. Onuma TA, Ding Y, Abraham E, Zohar Y, Ando H, Duan C. Regulation of temporal and spatial organization of newborn GnRH neurons by IGF signaling in zebrafish. J Neurosci. 2011;31:11814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cicco-Bloom E, Black IB. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc Natl Acad Sci USA. 1988;85:4066–70.

    Article  Google Scholar 

  88. Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Natl Acad Sci USA. 1991;88:2199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hodge RD, D’Ercole AJ, O’Kusky JR. Insulin-like growth factor-I accelerates the cell cycle by decreasing g1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci. 2004;24:10201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yeh C, Li A, Chuang JZ, Saito M, Caceres A, Sung CH. IGF-1 Activates a Cilium-Localized Noncanonical Gbetagamma Signaling Pathway that Regulates Cell-Cycle Progression. Dev Cell. 2013;26:358–68.

  91. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992;70:31–46.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng CM, Cohen M, Tseng V, Bondy CA. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res. 2001;64:341–7.

    Article  CAS  PubMed  Google Scholar 

  93. Schlueter PJ, Peng G, Westerfield M, Duan C. Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell Death Differ. 2007;14:1095–105.

    Article  CAS  PubMed  Google Scholar 

  94. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 2013;16:543–51.

    Article  CAS  PubMed  Google Scholar 

  95. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson IC, et al. IGF-1 induces GHRH Neuronal axon elongation during early postnatal life in Mice. PLoS One. 2017;12:e0170083.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Guil AFN, Oksdath M, Weiss LA, Grassi DJ, Sosa LJ, Nieto M, et al. IGF-1 receptor regulates dynamic changes in neuronal polarity during cerebral cortical migration. Sci Rep. 2017;7:7703.

    Article  Google Scholar 

  97. Jin J, Ravindran P, Di Meo D, Puschel AW. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS One. 2019;14:e0219362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 2000;20:8435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Okano T, Xuan S, Kelley MW. Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J Neurosci. 2011;31:18104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci. 2006;9:1371–81.

    Article  PubMed  Google Scholar 

  101. Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci. 2006;9:993–5.

    Article  CAS  PubMed  Google Scholar 

  102. Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci. 2002;22:6041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron. 1995;14:717–30.

    Article  CAS  PubMed  Google Scholar 

  104. Caldwell ALM, Sancho L, Deng J, Bosworth A, Miglietta A, Diedrich JK, et al. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci. 2022;25:1163–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anderson MF, Aberg MA, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res. 2002;134:115–22.

    Article  CAS  PubMed  Google Scholar 

  106. Prabhu D, Khan SM, Blackburn K, Marshall JP, Ashpole NM. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J neurochemistry. 2019;151:689–702.

    Article  CAS  Google Scholar 

  107. Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, et al. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience. 2021;43:901–11.

  108. Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci. 2007;27:8745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Genis L, Davila D, Fernandez S, Pozo-Rodrigalvarez A, Martinez-Murillo R, Torres-Aleman I. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res. 2014;3:28.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab. 2018;9:141–155.

  111. Aberg ND, Blomstrand F, Aberg MA, Bjorklund U, Carlsson B, Carlsson-Skwirut C, et al. Insulin-like growth factor-I increases astrocyte intercellular gap junctional communication and connexin43 expression in vitro. J Neurosci Res. 2003;74:12–22.

    Article  CAS  PubMed  Google Scholar 

  112. Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA. Insulin-like Signaling Promotes Glial Phagocytic Clearance of Degenerating Axons through Regulation of Draper. Cell Rep. 2016;16:1838–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hernandez-Garzon E, Fernandez AM, Perez-Alvarez A, Genis L, Bascunana P, Fernandez de la Rosa R, et al. The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia. 2016;64:962–1971.

  114. Fernandez AM, Hernandez-Garzon E, Perez-Domper P, Perez-Alvarez A, Mederos S, Matsui T, et al. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I. Diabetes. 2017;66:64–74.

    Article  CAS  PubMed  Google Scholar 

  115. Quipildor GF, Mao K, Beltran PJ, Barzilai N, Huffman DM. Modulation of Glucose Production by Central Insulin Requires IGF-1 Receptors in AgRP Neurons. Diabetes. 2021;70:2237–249.

  116. Sanchez-Alavez M, Osborn O, Tabarean IV, Holmberg KH, Eberwine J, Kahn CR, et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J Biol Chem. 2011;286:14983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gutierrez-Ospina G, Saum L, Calikoglu AS, az-Cintra S, Barrios FA, D’Ercole AJ. Increased neural activity in transgenic mice with brain IGF-I overexpression: a [3H]2DG study. Neuroreport. 1997;8:2907–11.

    Article  CAS  PubMed  Google Scholar 

  118. Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Dordr). 2013;35:1575–87.

    Article  CAS  PubMed  Google Scholar 

  119. Noriega-Prieto JA, Maglio LE, Ibáñez-Santana S, de Sevilla DF. Endocannabinoid and Nitric Oxide-Dependent IGF-I-Mediated Synaptic Plasticity at Mice Barrel Cortex. Cells. 2022;11:1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burgdorf J, Zhang XL, Colechio EM, Ghoreishi-Haack N, Gross A, Kroes RA, et al. Insulin-Like Growth Factor I Produces an Antidepressant-Like Effect and Elicits N-Methyl-D-Aspartate Receptor Independent Long-Term Potentiation of Synaptic Transmission in Medial Prefrontal Cortex and Hippocampus. Int J Neuropsychopharmacol. 2015;19:pyv101.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing Activities Protect Against Age Onset Proteotoxicity. Science. 2006;313:1604–10.

    Article  CAS  PubMed  Google Scholar 

  122. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med. 2002;8:1390–7.

    Article  CAS  PubMed  Google Scholar 

  123. Herrero-Labrador R, Trueba-Saiz A, Martinez-Rachadell L, Fernandez de Sevilla ME, Zegarra-Valdivia JA, Pignatelli J, et al. Circulating Insulin-Like Growth Factor I is Involved in the Effect of High Fat Diet on Peripheral Amyloid β Clearance. Int J Mol Sci. 2020;21:9675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem. 2007;282:10203–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kao SY. Rescue of alpha-synuclein cytotoxicity by insulin-like growth factors. Biochem Biophys Res Commun. 2009;385:434–8.

    Article  CAS  PubMed  Google Scholar 

  126. Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-{beta} precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem. 2010;285:10223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Breit A, Miek L, Schredelseker J, Geibel M, Merrow M, Gudermann T. Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycogen synthase kinase-3beta signalling. J Biol Chem. 2018;293:7278–17290.

  128. Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J. Pitpnc1a regulates zebrafish sleep and wake behavior through modulation of insulin-like growth factor signaling. Cell Rep. 2018;24:1389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zegarra-Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez-Rachadell L, et al. Insulin-like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J. 2020;34:15975–90.

    Article  CAS  PubMed  Google Scholar 

  130. Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell. 2019;177:896–909.e820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA. 2000;97:10236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huffman DM, Farias Quipildor G, Mao K, Zhang X, Wan J, Apontes P, et al. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell. 2016;15:181–6.

    Article  CAS  PubMed  Google Scholar 

  133. Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res. 2003;74:512–23.

    Article  CAS  PubMed  Google Scholar 

  134. Hu A, Yuan H, Wu L, Chen R, Chen Q, Zhang T, et al. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice. Brain Res. 2016;1631:204–13.

    Article  CAS  PubMed  Google Scholar 

  135. Baldini S, Restani L, Baroncelli L, Coltelli M, Franco R, Cenni MC, et al. Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J Neurosci. 2013;33:11715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hoshaw BA, Hill TI, Crowley JJ, Malberg JE, Khawaja X, Rosenzweig-Lipson S, et al. Antidepressant-like behavioral effects of IGF-I produced by enhanced serotonin transmission. Eur J Pharm. 2008;594:109–16.

    Article  CAS  Google Scholar 

  137. Fernandez de Sevilla ME, Pignatelli J, Zegarra-Valdivia JA, Mendez P, Nunez A, Torres Aleman I. Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry. 2022;27:212–2196.

  138. Okereke OI, Kang JH, Ma J, Gaziano JM, Grodstein F. Midlife plasma insulin-like growth factor I and cognitive function in older men. J Clin Endocrinol Metab. 2006;91:4306–12.

    Article  CAS  PubMed  Google Scholar 

  139. Okereke O, Kang JH, Ma J, Hankinson SE, Pollak MN, Grodstein F. Plasma IGF-I levels and cognitive performance in older women. Neurobiol Aging. 2007;28:35–142.

  140. Lin F, Suhr J, Diebold S, Heffner KL. Associations between depressive symptoms and memory deficits vary as a function of insulin-like growth factor (IGF-1) levels in healthy older adults. Psychoneuroendocrinology. 2014;42:118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santi A, Bot M, Aleman A, Penninx BWJH, Aleman IT. Circulating insulin-like growth factor I modulates mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry. 2018;8:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Munive V, Santi A, Torres-Aleman I. A concerted action of estradiol and insulin like growth factor i underlies sex differences in mood regulation by exercise. Sci Rep. 2016;6:259–69.

    Article  Google Scholar 

  143. Haghir H, Rezaee AA, Nomani H, Sankian M, Kheradmand H, Hami J. Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum. Cell Mol Neurobiol. 2013;33:369–77.

    Article  CAS  PubMed  Google Scholar 

  144. Pinto-Benito D, Paradela-Leal C, Ganchala D, de Castro-Molina P, Arevalo M-A. IGF-1 regulates astrocytic phagocytosis and inflammation through the p110α isoform of PI3K in a sex-specific manner. Glia. 2022;70:1153–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Freude S, Schilbach K, Hettich MM, Bronneke HS, Zemva J, Krone W, et al. Neuron-specific deletion of a single copy of the insulin-like growth factor-1 receptor gene reduces fat accumulation during aging. Horm Metab Res. 2012;44:99–104.

    Article  CAS  PubMed  Google Scholar 

  146. Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science. 2018;362:429–34.

    Article  CAS  PubMed  Google Scholar 

  147. Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci USA. 2022;119:e2201194119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron. 2022;110:2545–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nature Neuroscience. 2020;24:82–92.

  150. Redhead D, Power EA. Social hierarchies and social networks in humans. Philos Trans R Soc Lond B Biol Sci. 2022;377:20200440.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Vera Cruz EM, Brown CL. The influence of social status on the rate of growth, eye color pattern and insulin-like growth factor-I gene expression in Nile tilapia, Oreochromis niloticus. Horm Behav. 2007;51:611–9.

    Article  CAS  PubMed  Google Scholar 

  152. Kumari M, Tabassum F, Clark C, Strachan D, Stansfeld S, Power C. Social differences in insulin-like growth factor-1: findings from a British birth cohort. Ann Epidemiol. 2008;18:664–70.

    Article  PubMed  Google Scholar 

  153. Sapolsky RM. The influence of social hierarchy on primate health. Science. 2005;308:648–52.

    Article  CAS  PubMed  Google Scholar 

  154. Burgdorf J, Kroes RA, Beinfeld MC, Panksepp J, Moskal JR. Uncovering the Molecular Basis of Positive Affect Using Rough-and-Tumble Play in Rats: A Role for Insulin-Like Growth Factor I. Neuroscience. 2010;126:769–77.

    Article  Google Scholar 

  155. Frere S, Slutsky I. Alzheimer’s Disease: From Firing Instability to Homeostasis Network Collapse. Neuron. 2018;97:32–58.

    Article  CAS  PubMed  Google Scholar 

  156. Katsenelson M, Shapira I, Abbas E, Jevdokimenko K, Styr B, Ruggiero A, et al. IGF-1 receptor regulates upward firing rate homeostasis via the mitochondrial calcium uniporter. Proc Natl Acad Sci USA. 2022;119:e2121040119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yue S, Wang Y, Wang ZJ. Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology. 2022;217:109204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nunez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol. 2003;89:3008–17.

    Article  CAS  PubMed  Google Scholar 

  159. Blair LA, Marshall J. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron. 1997;19:421–9.

    Article  CAS  PubMed  Google Scholar 

  160. Kleppisch T, Klinz FJ, Hescheler J. Insulin-like growth factor I modulates voltage-dependent Ca2+ channels in neuronal cells. Brain Res. 1992;591:283–8.

    Article  CAS  PubMed  Google Scholar 

  161. Gao L, Blair LAC, Salinas GD, Needleman LA, Marshall J. Insulin-Like Growth Factor-1 Modulation of CaV1.3 Calcium Channels Depends on Ca2+ Release from IP3-Sensitive Stores and Calcium/Calmodulin Kinase II Phosphorylation of the {alpha}1 Subunit EF Hand. J Neurosci. 2006;26:6259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. O’Malley D, Harvey J. Insulin Activates Native and Recombinant Large Conductance Ca2+-Activated Potassium Channels via a Mitogen-Activated Protein Kinase-Dependent Process. Mol Pharm. 2004;65:1352–63.

    Article  Google Scholar 

  163. Shan H, Delbono L, Zheng Z, Wang ZM, Delbono O. Preservation of Motor Neuron Ca2+ Channels Sensitivity to Insulin-like growth factor-1 in Brain Motor Cortex from Senescent Rat. J Physiol. 2003;553:49–63.

  164. Wang H, Qin J, Gong S, Feng B, Zhang Y, Tao J. Insulin-like growth factor-1 receptor-mediated inhibition of A-type K(+) current induces sensory neuronal hyperexcitability through the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 pathways, independently of Akt. Endocrinology. 2014;155:168–79.

    Article  PubMed  Google Scholar 

  165. Zhang Y, Qin W, Qian Z, Liu X, Wang H, Gong S, et al. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Sci Signal. 2014;7:ra94.

    Article  PubMed  Google Scholar 

  166. Stemkowski PL, Zamponi GW. The tao of IGF-1: insulin-like growth factor receptor activation increases pain by enhancing T-type calcium channel activity. Sci Signal. 2014;7:pe23.

    Article  PubMed  Google Scholar 

  167. Yanagita T, Satoh S, Uezono Y, Matsuo K, Nemoto T, Maruta T, et al. Transcriptional up-regulation of cell surface Na(V)1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3beta in adrenal chromaffin cells: enhancement of (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion. Neuropharmacology. 2011;61:1265–74.

    Article  CAS  PubMed  Google Scholar 

  168. Savchenko A, Kraft TW, Molokanova E, Kramer RH. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. Proc Natl Acad Sci USA. 2001;98:5880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006;140:823–33.

    Article  CAS  PubMed  Google Scholar 

  170. Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. NGF protects endothelial cells from indomethacin-induced injury through activation of mitochondria and upregulation of IGF-1. Cell Signal. 2017;40:22–29.

    Article  CAS  PubMed  Google Scholar 

  171. Martin B, Brenneman R, Golden E, Walent T, Becker KG, Prabhu VV, et al. Growth factor signals in neural cells: Coherent patterns of interaction control multiple levels of molecular and phenotypic responses. J Biol Chem. 2008;284:2493–511.

  172. Lang CH, Nystrom GJ, Frost RA. Tissue-specific regulation of IGF-I and IGF-binding proteins in response to TNFalpha. Growth Horm IGF Res. 2001;11:250–60.

    Article  CAS  PubMed  Google Scholar 

  173. Tu H, Xu C, Zhang W, Liu Q, Rondard P, Pin JP, et al. GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J Neurosci. 2010;30:749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Derakhshanian H, Javanbakht MH, Zarei M, Djalali E, Djalali M. Vitamin D increases IGF-I and insulin levels in experimental diabetic rats. Growth Horm IGF Res. 2017;36:57–59.

    Article  CAS  PubMed  Google Scholar 

  175. Clemmons DR, Underwood LE. Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev Nutr. 1991;11:393–412.

    Article  CAS  PubMed  Google Scholar 

  176. Della TS, Rando G, Meda C, Stell A, Chambon P, Krust A, et al. Amino Acid-Dependent Activation of Liver Estrogen Receptor Alpha Integrates Metabolic and Reproductive Functions via IGF-1. Cell Metab. 2011;13:205–14.

    Article  Google Scholar 

  177. Taguchi A, White MF. Insulin-Like Signaling, Nutrient Homeostasis, and Life Span. Annu Rev Physiol. 2007;70:191–212.

  178. Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31:224–43.

    Article  CAS  PubMed  Google Scholar 

  180. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tong M, Dong M, de la Monte SM. Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with lewy bodies: potential role of manganese neurotoxicity. J Alzheimers Dis. 2009;16:585–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bassil F, Delamarre A, Canron MH, Dutheil N, Vital A, Négrier-Leibreich ML, et al. Impaired brain insulin signalling in Parkinson’s disease. Neuropathol Appl Neurobiol. 2022;48:e12760.

    Article  CAS  PubMed  Google Scholar 

  183. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2:831–7.

    Article  CAS  PubMed  Google Scholar 

  184. Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro. 2019;11:1759091419839515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chesik D, De KJ, Glazenburg L, Wilczak N. Insulin-like growth factor binding proteins: regulation in chronic active plaques in multiple sclerosis and functional analysis of glial cells. Eur J Neurosci. 2006;24:1645–52.

    Article  PubMed  Google Scholar 

  186. Wilczak N, de Vos RA, De Keyser J. Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet. 2003;361:1007–11.

    Article  CAS  PubMed  Google Scholar 

  187. Cioana M, Michalski B, Fahnestock M. Insulin-Like Growth Factor and Insulin-Like Growth Factor Receptor Expression in Human Idiopathic Autism Fusiform Gyrus Tissue. Autism Res. 2020;13:897–907.

    Article  PubMed  Google Scholar 

  188. Ostrowski PP, Barszczyk A, Forstenpointner J, Zheng W, Feng ZP. Meta-Analysis of Serum Insulin-Like Growth Factor 1 in Alzheimer’s Disease. PLoS One. 2016;11:e0155733.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging. 2006;27:1250–7.

    Article  CAS  PubMed  Google Scholar 

  190. Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer’s disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus. 2021;31:1137–53.

    Article  CAS  PubMed  Google Scholar 

  191. Shin EJ, Chae JS, Park SJ, Kim SC, Koo KH, Yamada K, et al. Growth Hormone-Releaser Diet Attenuates beta-Amyloid(1-42)-Induced Cognitive Impairment via Stimulation of the Insulin-Like Growth Factor (IGF)-1 Receptor in Mice. J Pharm Sci. 2009;109:139–43.

    Article  CAS  Google Scholar 

  192. Song F, Liu T, Meng S, Li F, Zhang Y, Jiang L. Insulin-Like Growth Factor-1 Alleviates Expression of Abeta1-40 and alpha-, beta-, and gamma-Secretases in the Cortex and Hippocampus of APP/PS1 Double Transgenic Mice. J Mol Neurosci. 2018;66:595–603.

    Article  CAS  PubMed  Google Scholar 

  193. Lanz TA, Salatto CT, Semproni AR, Marconi M, Brown TM, Richter KE, et al. Peripheral elevation of IGF-1 fails to alter Abeta clearance in multiple in vivo models. Biochem Pharm. 2008;75:1093–103.

    Article  CAS  PubMed  Google Scholar 

  194. Ebert AD, Beres AJ, Barber AE, Svendsen CN. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol. 2008;209:213–23.

    Article  CAS  PubMed  Google Scholar 

  195. Lopes C, Ribeiro M, Duarte AI, Humbert S, Saudou F, Pereira de AL, et al. IGF-1 Intranasal Administration Rescues Huntington’s Disease Phenotypes in YAC128 Mice. Mol Neurobiol. 2013;49:1126–42.

  196. Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol. 2005;168:193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301:839–42.

    Article  CAS  PubMed  Google Scholar 

  199. Fernandez AM, de la Vega AG, Torres-Aleman I. Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA. 1998;95:1253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lin YS, Cheng WL, Chang JC, Lin TT, Chao YC, Liu CS. IGF-1 as a Potential Therapy for Spinocerebellar Ataxia Type 3. Biomedicines. 2022;10:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Montivero AJ, Ghersi MS, Silvero CM, Artur de la Villarmois E, Catalan-Figueroa J, Herrera M, et al. Early IGF-1 Gene Therapy Prevented Oxidative Stress and Cognitive Deficits Induced by Traumatic Brain Injury. Front Pharm. 2021;12:672392.

    Article  CAS  Google Scholar 

  202. Hung KS, Tsai SH, Lee TC, Lin JW, Chang CK, Chiu WT. Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats. J Neurosurg Spine. 2007;6:35–46.

    Article  PubMed  Google Scholar 

  203. Frank JA, Richert N, Lewis B, Bash C, Howard T, Civil R, et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult Scler. 2002;8:24–29.

    CAS  PubMed  Google Scholar 

  204. Lai EC, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, et al. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology. 1997;49:1621–30.

    Article  CAS  PubMed  Google Scholar 

  205. Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, et al. Illness Severity, Social and Cognitive Ability, and EEG Analysis of Ten Patients with Rett Syndrome Treated with Mecasermin (Recombinant Human IGF-1). Autism Res Treat. 2016;2016:5073078.

    PubMed  PubMed Central  Google Scholar 

  206. Kolevzon A, Breen MS, Siper PM, Halpern D, Frank Y, Rieger H, et al. Clinical trial of insulin-like growth factor-1 in Phelan-McDermid syndrome. Mol Autism. 2022;13:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sanz-Gallego I, Rodriguez-de-Rivera FJ, Pulido I, Torres-Aleman I, Arpa J. IGF-1 in autosomal dominant cerebellar ataxia - open-label trial. Cerebellum Ataxias. 2014;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sanz-Gallego I, Torres-Aleman I, Arpa J. IGF-1 in Friedreich’s Ataxia - proof-of-concept trial. Cerebellum Ataxias. 2014;1:10.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Freude S, Hettich MM, Schumann C, Stohr O, Koch L, Kohler C, et al. Neuronal IGF-1 resistance reduces A{beta} accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 2009;23:3315–24.

    Article  CAS  PubMed  Google Scholar 

  210. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell. 2009;139:1157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gontier G, George C, Chaker Z, Holzenberger M, Aid S. Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer’s Disease Pathology through Amyloid-beta Clearance. J Neurosci. 2015;35:11500–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, et al. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia. 2022;71:616–32.

  213. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7.

    Article  CAS  PubMed  Google Scholar 

  214. Jagust W. Vulnerable Neural Systems and the Borderland of Brain Aging and Neurodegeneration. Neuron. 2013;77:219–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jakubik M, Floriddia EM, Nicotera P, Bano D. Heterozygous Igf1r deletion does not ameliorate pathological features associated with polyglutamine-containing huntingtin fragment. Neurosci Lett. 2014;580:52–5.

    Article  CAS  PubMed  Google Scholar 

  216. Zegarra-Valdivia J, Fernandez AM, Martinez-Rachadell L, Herrero-Labrador R, Fernandes J, Torres Aleman I. Insulin and insulin-like growth factor-I receptors in astrocytes exert different effects on behavior and Alzheimer s-like pathology. F1000Res. 2022;11:663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Boucher J, Macotela Y, Bezy O, Mori MA, Kriauciunas K, Kahn CR. A Kinase-Independent Role for Unoccupied Insulin and IGF-1 Receptors in the Control of Apoptosis. Sci Signal. 2010;3:ra87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9:759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Rincon M, Muzumdar R, Atzmon G, Barzilai N. The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev. 2004;125:397–403.

    Article  CAS  PubMed  Google Scholar 

  220. Zhang WB, Milman S. Looking at IGF-1 through the hourglass. Aging (Albany NY). 2022;14:6379–80.

    Article  PubMed  Google Scholar 

  221. Leifke E, Gorenoi V, Wichers C, Von Zur MA, Von Buren E, Brabant G. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol (Oxf). 2000;53:689–95.

    Article  CAS  PubMed  Google Scholar 

  222. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment-A review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51.

    Article  PubMed  Google Scholar 

  223. Bodart G, Goffinet L, Morrhaye G, Farhat K, de Saint-Hubert M, Debacq-Chainiaux F, et al. Somatotrope GHRH/GH/IGF-1 axis at the crossroads between immunosenescence and frailty. Ann N. Y Acad Sci. 2015;1351:61–7.

    Article  CAS  PubMed  Google Scholar 

  224. Yeap BB, Paul Chubb SA, Lopez D, Ho KK, Hankey GJ, Flicker L. Associations of Insulin-like Growth Factor-I and its binding proteins, and testosterone, with frailty in older men. Clin Endocrinol (Oxf) 2012;708:752–59.

  225. Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol. 2018;61:T171–t185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caille I, et al. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging. 2016;41:64–72.

    Article  CAS  PubMed  Google Scholar 

  227. Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, et al. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. Geroscience. 2022;44:223–2257.

  228. El-Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell. 2014;13:165–74.

    Article  CAS  PubMed  Google Scholar 

  229. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RA. C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.

    Article  CAS  PubMed  Google Scholar 

  230. Mustafa A, Lannfelt L, Lilius L, Islam A, Winblad B, Adem A. Decreased plasma insulin-like growth factor-I level in familial Alzheimer’s disease patients carrying the Swedish APP 670/671 mutation. Dement Geriatr Cogn Disord. 1999;10:446–51.

    Article  CAS  PubMed  Google Scholar 

  231. Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR. Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect. 1993;5:165–76.

    Article  CAS  PubMed  Google Scholar 

  232. Salehi Z, Mashayekhi F, Naji M. Insulin like growth factor-1 and insulin like growth factor binding proteins in the cerebrospinal fluid and serum from patients with Alzheimer’s disease. Biofactors. 2008;33:99–106.

    Article  CAS  PubMed  Google Scholar 

  233. Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM. Increased Circulating Insulin-like Growth Factor-1 in Late-onset Alzheimer’s Disease. J Alzheimers Dis. 2007;12:285–90.

    Article  CAS  PubMed  Google Scholar 

  234. Watanabe T, Miyazaki A, Katagiri T, Yamamoto H, Idei T, Iguchi T. Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia. J Am Geriatr Soc. 2005;53:1748–53.

    Article  PubMed  Google Scholar 

  235. Almeida OP, Hankey GJ, Yeap BB, Paul Chubb SA, Gollege J, Flicker L. Risk of prevalent and incident dementia associated with insulin-like growth factor and insulin-like growth factor-binding protein 3. Mol Psychiatry. 2018;23:1825–9.

    Article  CAS  PubMed  Google Scholar 

  236. Godau J, Herfurth M, Kattner B, Gasser T, Berg D. Increased serum insulin-like growth factor 1 in early idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81;536–8.

  237. Mashayekhi F, Mirzajani E, Naji M, Azari M. Expression of insulin-like growth factor-1 and insulin-like growth factor binding proteins in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci. 2010;17:623–7.

  238. Bernhard FP, Heinzel S, Binder G, Weber K, Apel A, Roeben B, et al. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson’s Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors. PLoS One. 2016;11:e0150552.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, et al. Neuroendocrine disturbances in Huntington’s disease. PLoS One. 2009;4:e4962.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Deuschle M, Blum WF, Strasburger CJ, Schweiger U, Weber B, Korner A, et al. Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology. 1997;22:493–503.

    Article  CAS  PubMed  Google Scholar 

  241. Milanesi E, Zanardini R, Rosso G, Maina G, Barbon A, Mora C, et al. Insulin-like growth factor binding protein 2 in bipolar disorder: An expression study in peripheral tissues. World J Biol Psychiatry. 2018;19:610–8.

    Article  PubMed  Google Scholar 

  242. Torres-Aleman I, Barrios V, Berciano J. The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology. 1998;50:772–6.

    Article  CAS  PubMed  Google Scholar 

  243. Lanzillo R, Di Somma C, Quarantelli M, Ventrella G, Gasperi M, Prinster A, et al. Insulin-like growth factor (IGF)-I and IGF-binding protein-3 serum levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Eur J Neurol. 2011;18:1402–6.

    Article  CAS  PubMed  Google Scholar 

  244. Hosback S, Hardiman O, Nolan CM, Doyle MA, Gorman G, Lynch C, et al. Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis. Growth Horm IGF Res. 2007;17:472–9.

    Article  CAS  PubMed  Google Scholar 

  245. Wilczak N, Ramsaransing GS, Mostert J, Chesik D, De Keyser J. Serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in relapsing and primary progressive multiple sclerosis. Mult Scler. 2005;11:13–15.

    Article  CAS  PubMed  Google Scholar 

  246. Braunstein GD, Reviczky AL. Serum insulin-like growth factor-I levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1987;50:792–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Huang TS, Wang YH, Lien IN. Suppression of the hypothalamus-pituitary somatotrope axis in men with spinal cord injuries. Metabolism. 1995;44:1116–20.

    Article  CAS  PubMed  Google Scholar 

  248. Otzel DM, Kok HJ, Graham ZA, Barton ER, Yarrow JF. Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury. Curr Opin Pharm. 2021;60:193–9.

    Article  CAS  Google Scholar 

  249. Wang S, Liu Y, Wu C, Zhao W, Zhang J, Bao G, et al. The Expression of IGFBP6 after Spinal Cord Injury: Implications for Neuronal Apoptosis. Neurochem Res. 2017;42:455–67.

    Article  CAS  PubMed  Google Scholar 

  250. Hammarberg H, Risling M, Hökfelt T, Cullheim S, Piehl F. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries. J Comp Neurol. 1998;400:57–72.

    Article  CAS  PubMed  Google Scholar 

  251. Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, et al. Neurodegeneration Is Associated to Changes in Serum Insulin-like Growth Factors. Neurobiol Dis. 2000;7:657–65.

    Article  CAS  PubMed  Google Scholar 

  252. Torres-Aleman I, Barrios V, Lledo A, Berciano J. The insulin-like growth factor I system in cerebellar degeneration. Ann Neurol. 1996;39:335–42.

    Article  CAS  PubMed  Google Scholar 

  253. Saute JA, da Silva AC, Muller AP, Hansel G, de Mello AS, Maeda F, et al. Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord. 2011;26:731–5.

    Article  PubMed  Google Scholar 

  254. Schubert R, Reichenbach J, Zielen S. Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol. 2005;140:517–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Palomino A, Gonzalez-Pinto A, Martinez-Cengotitabengoa M, de A, Sr., Alberich S, Mosquera F, et al. Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:29–33.

  256. Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, et al. Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry. 2007;164:1557–60.

    Article  PubMed  Google Scholar 

  257. Yang YJ, Luo T, Zhao Y, Jiang SZ, Xiong JW, Zhan JQ, et al. Altered insulin-like growth factor-2 signaling is associated with psychopathology and cognitive deficits in patients with schizophrenia. PLoS One. 2020;15:e0226688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Schwab S, Spranger M, Krempien S, Hacke W, Bettendorf M. Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke. 1997;28:1744–8.

    Article  CAS  PubMed  Google Scholar 

  259. Bendel S, Koivisto T, Ryynänen OP, Ruokonen E, Romppanen J, Kiviniemi V, et al. Insulin like growth factor-I in acute subarachnoid hemorrhage: a prospective cohort study. Crit Care. 2010;14:R75.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Şimşek F, Işık Ü, Aktepe E, Kılıç F, Şirin FB, Bozkurt M. Comparison of Serum VEGF, IGF-1, and HIF-1α Levels in Children with Autism Spectrum Disorder and Healthy Controls. J Autism Dev Disord. 2021;51:3564–74.

    Article  PubMed  Google Scholar 

  261. Robinson-Agramonte MLA, Michalski B, Vidal-Martinez B, Hernández LR, Santiesteban MW, Fahnestock M. BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep. 2022;12:13768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mills JL, Hediger ML, Molloy CA, Chrousos GP, Manning-Courtney P, Yu KF, et al. Elevated levels of growth-related hormones in autism and autism spectrum disorder. Clin Endocrinol (Oxf). 2007;67:230–7.

    Article  CAS  PubMed  Google Scholar 

  263. Abedini M, Mashayekhi F, Salehi Z. Analysis of Insulin-like growth factor-1 serum levels and promoter (rs12579108) polymorphism in the children with autism spectrum disorders. J Clin Neurosci. 2022;99:289–93.

    Article  CAS  PubMed  Google Scholar 

  264. Li Z, Xiao GY, He CY, Liu X, Fan X, Zhao Y, et al. Serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in children with autism spectrum disorder. Zhongguo Dang Dai Er Ke Za Zhi. 2022;24:186–91.

    PubMed  Google Scholar 

  265. Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med. 2004;82:156–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank past members of the lab for their contributions and long-term funding support from Ciberned and the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Contributions

AN, JZ-V, DFdeS, and JP designed and performed experiments commented in the text and reviewed the manuscript. ITA designed all the studies and wrote the manuscript.

Corresponding author

Correspondence to I. Torres Aleman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuñez, A., Zegarra-Valdivia, J., Fernandez de Sevilla, D. et al. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 28, 3220–3230 (2023). https://doi.org/10.1038/s41380-023-02136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02136-6

Search

Quick links