Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disorders of sex development: effect of molecular diagnostics

Key Points

  • Disorders of sex development (DSDs) can arise from a range of different chromosomal, copy number and single gene effects

  • Karyotype analysis or assessment of the sex chromosome complement can be used to diagnose forms of sex chromosome DSDs, and can help focus investigations and diagnoses in 46,XY and 46,XX DSDs

  • Traditional candidate gene Sanger sequencing is most appropriate where phenotypic, biochemical or familial data strongly suggest a specific single gene cause

  • Array-comparative genomic hybridization is useful for investigating children with complex phenotypes and can sometimes reveal copy number changes associated with DSDs

  • High-throughput next-generation sequencing using targeted arrays or exomes (or genomes) is rapidly being developed and clinical tests using these methods are likely to be increasingly available in the next few years

  • Genetic or chromosomal diagnosis can influence clinical management of patients with DSDs and focus support and counselling for families

Abstract

Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular approach for genetic diagnosis of individuals with 46,XY DSDs.

Similar content being viewed by others

References

  1. Eggers, S., Ohnesorg, T. & Sinclair, A. Genetic regulation of mammalian gonad development. Nat. Rev. Endocrinol. 10, 673–683 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A. Consensus statement on management of intersex disorders. Arch. Dis. Child. 91, 554–563 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hsu, L. Y. Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am. J. Med. Genet. 53, 108–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Griffin, J., McPhaul, M., Russell, D. & Wilson, J. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 2967–2979 (McGraw-Hill, 1995).

    Google Scholar 

  5. De Marchi, M., Campagnoli, C., Ghiringhello, B., Ponzio, G. & Carbonara, A. Gonadal agenesis in a phenotypically normal female with positive H-Y antigen. Hum. Genet. 56, 417–419 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Berkovitz, G. D. et al. Clinical and pathologic spectrum of 46,XY gonadal dysgenesis: its relevance to the understanding of sex differentiation. Medicine (Baltimore) 70, 375–383 (1991).

    Article  CAS  Google Scholar 

  7. Eggers, S. & Sinclair, A. Mammalian sex determination-insights from humans and mice. Chromosome Res. 20, 215–238 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ahmed, S. F. et al. UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development. Clin. Endocrinol. (Oxf.) 75, 12–26 (2011).

    Article  Google Scholar 

  9. Ahmed, S. F. et al. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 85, 658–665 (2000).

    CAS  PubMed  Google Scholar 

  10. McDonald, M. T., Flejter, W., Sheldon, S., Putzi, M. J. & Gorski, J. L. XY sex reversal and gonadal dysgenesis due to 9p24 monosomy. Am. J. Med. Genet. 73, 321–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Baxter, R. M. & Vilain, E. Translational genetics for diagnosis of human disorders of sex development. Annu. Rev. Genomics Hum. Genet. 14, 371–392 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Martin, R. M. et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J. Clin. Endocrinol. Metab. 88, 5739–5746 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mendonca, B. B. et al. Male pseudohermaphroditism due to 17β-hydroxysteroid dehydrogenase 3 deficiency. Diagnosis, psychological evaluation, and management. Medicine (Baltimore) 79, 299–309 (2000).

    Article  CAS  Google Scholar 

  14. Barbaro, M. et al. Gene dosage imbalances in patients with 46,XY gonadal DSD detected by an in-house-designed synthetic probe set for multiplex ligation-dependent probe amplification analysis. Clin. Genet. 73, 453–464 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Gundry, M. & Vijg, J. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat. Res. 729, 1–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Ledig, S. et al. Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum. Reprod. 25, 2637–2646 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tannour-Louet, M. et al. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS ONE 5, e15392 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Norling, A. et al. Novel candidate genes for 46,XY gonadal dysgenesis identified by a customized 1 M array-CGH platform. Eur. J. Med. Genet. 56, 661–668 (2013).

    Article  PubMed  Google Scholar 

  19. Shinawi, M. & Cheung, S. W. The array CGH and its clinical applications. Drug Discov. Today 13, 760–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. White, S. et al. Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS ONE 6, e17793 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kingsmore, S. F. & Saunders, C. J. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci. Transl. Med. 3, 87ps23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Swanson, A., Ramos, E. & Snyder, H. Next generation sequencing is the impetus for the next generation of laboratory-based genetic counselors. J. Genet. Couns. 23, 647–654 (2014).

    Article  PubMed  Google Scholar 

  24. Bashamboo, A., Ledig, S., Wieacker, P., Achermann, J. C. & McElreavey, K. New technologies for the identification of novel genetic markers of disorders of sex development (DSD). Sex. Dev. 4, 213–224 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Facio, F. M. et al. Intentions to receive individual results from whole-genome sequencing among participants in the ClinSeq study. Eur. J. Hum. Genet. 21, 261–265 (2013).

    Article  PubMed  Google Scholar 

  26. Facio, F. M., Lee, K. & O'Daniel, J. M. A genetic counselor's guide to using next-generation sequencing in clinical practice. J. Genet. Couns. 23, 455–462 (2014).

    Article  PubMed  Google Scholar 

  27. Biesecker, L. G. & Green, R. C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014).

    PubMed  Google Scholar 

  28. Strom, S. P. et al. Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory. Genet. Med. 16, 510–515 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Toledo, R. A. & Dahia, P. L. Next-generation sequencing for the genetic screening of phaeochromcytomas and paragangliomas: riding the new wave, but with caution. Clin. Endocrinol. (Oxf.) 80, 23–24 (2014).

    Article  CAS  Google Scholar 

  30. Facio, F. M., Lee, K. & O'Daniel, J. M. A genetic counselor's guide to using next-generation sequencing in clinical practice. J. Genet. Couns. 23, 455–462 (2013).

    Article  PubMed  Google Scholar 

  31. Dorschner, M. O. et al. Actionable, pathogenic incidental findings in 1,000 participants' exomes. Am. J. Hum. Genet. 93, 631–640 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Baxter, R. M. et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J. Clin. Endocrinol. Metab. 100, E333–E344 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Katsanis, S. H. & Katsanis, N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14, 415–426 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pinette, M. G., Wax, J. R., Blackstone, J. & Cartin, A. Normal growth and development of fetal external genitalia demonstrated by sonography. J. Clin. Ultrasound 31, 465–472 (2003).

    Article  PubMed  Google Scholar 

  35. Pinhas-Hamiel, O. et al. Prenatal diagnosis of sex differentiation disorders: the role of fetal ultrasound. J. Clin. Endocrinol. Metab. 87, 4547–4553 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Colmant, C., Morin-Surroca, M., Fuchs, F., Fernandez, H. & Senat, M. V. Non-invasive prenatal testing for fetal sex determination: is ultrasound still relevant? Eur. J. Obstet. Gynecol. Reprod. Biol. 171, 197–204 (2013).

    Article  PubMed  Google Scholar 

  37. Tabor, A., Vestergaard, C. H. & Lidegaard, O. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet. Gynecol. 34, 19–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Mujezinovic, F. & Alfirevic, Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet. Gynecol. 110, 687–694 (2007).

    Article  PubMed  Google Scholar 

  39. Lo, Y. M. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Wright, C. F., Wei, Y., Higgins, J. P. & Sagoo, G. S. Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis. BMC Res. Notes 5, 476 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Devaney, S. A., Palomaki, G. E., Scott, J. A. & Bianchi, D. W. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 306, 627–636 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zimmermann, B. G., Holzgreve, W., Avent, N. & Hahn, S. Optimized real-time quantitative PCR measurement of male fetal DNA in maternal plasma. Ann. NY Acad. Sci. 1075, 347–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, F. M. et al. Feasibility study of using fetal DNA in maternal plasma for non-invasive prenatal diagnosis. Acta Obstet. Gynecol. Scand. 86, 535–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Martinhago, C. D. et al. Accuracy of fetal gender determination in maternal plasma at 5 and 6 weeks of pregnancy. Prenat. Diagn. 26, 1219–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hill, M., Barrett, A. N., White, H. & Chitty, L. S. Uses of cell free fetal DNA in maternal circulation. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 639–654 (2012).

    Article  PubMed  Google Scholar 

  46. Alvarez-Nava, F., Gonzalez, S., Soto, S., Pineda, L. & Morales-Machin, A. Mixed gonadal dysgenesis: a syndrome of broad clinical, cytogenetic and histopathologic spectrum. Genet. Couns. 10, 233–243 (1999).

    CAS  PubMed  Google Scholar 

  47. Ocal, G. et al. The clinical and genetic heterogeneity of mixed gonadal dysgenesis: does “disorders of sexual development (DSD)” classification based on new Chicago consensus cover all sex chromosome DSD? Eur. J. Pediatr. 171, 1497–1502 (2012).

    Article  PubMed  Google Scholar 

  48. Bagci, G., Acar, H. & Tomruk, H. Different chromosome Y abnormalities in Turner syndrome. Genet. Couns. 12, 255–261 (2001).

    CAS  PubMed  Google Scholar 

  49. Shinawi, M. et al. Mixed gonadal dysgenesis in a child with isodicentric Y chromosome: Does the relative proportion of the 45,X line really matter? Am. J. Med. Genet. A 152A, 1832–1837 (2010).

    Article  PubMed  Google Scholar 

  50. Prakash, S. et al. Single-nucleotide polymorphism array genotyping is equivalent to metaphase cytogenetics for diagnosis of Turner syndrome. Genet. Med. 16, 53–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Hersmus, R. et al. SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal disorders of sex development (DSD) patients with a mosaic karyotype. BMC Med. Genet. 13, 108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lobaccaro, J. M. et al. Molecular prenatal diagnosis of partial androgen insensitivity syndrome based on the Hind III polymorphism of the androgen receptor gene. Clin. Endocrinol. (Oxf.) 40, 297–302 (1994).

    Article  CAS  Google Scholar 

  53. Bertelloni, S. et al. 17β-hydroxysteroid dehydrogenase-3 deficiency: from pregnancy to adolescence. J. Endocrinol. Invest. 32, 666–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Richard, N. et al. Identification by array-comparative genomic hybridization (array-CGH) of a large deletion of luteinizing hormone receptor gene combined with a missense mutation in a patient diagnosed with a 46,XY disorder of sex development and application to prenatal diagnosis. Endocr. J. 58, 769–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Russo, G. et al. 46,XY karyotype in a female phenotype fetus: a challenging diagnosis. J. Pediatr. Adolesc. Gynecol. 25, e77–e79 (2012).

    Article  PubMed  Google Scholar 

  56. Ocal, G. Current concepts in disorders of sexual development. J. Clin. Res. Pediatr. Endocrinol. 3, 105–114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pearlman, A. et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am. J. Hum. Genet. 87, 898–904 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hutson, J. M., Grover, S. R., O'Connell, M. & Pennell, S. D. Malformation syndromes associated with disorders of sex development. Nat. Rev. Endocrinol. 10, 476–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Lourenco, D. et al. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc. Natl Acad. Sci. USA 108, 1597–1602 (2013).

    Article  Google Scholar 

  60. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Machado, A. Z. et al. Absence of inactivating mutations and deletions in the DMRT1 and FGF9 genes in a large cohort of 46,XY patients with gonadal dysgenesis. Eur. J. Med. Genet. 55, 690–694 (2012).

    Article  PubMed  Google Scholar 

  62. Benko, S. et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J. Med. Genet. 48, 825–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Arboleda, V. A. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin. Genet. 83, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Bashamboo, A. et al. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum. Mol. Genet. 23, 3657–3665 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Callier, P. et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet. 10, e1004340 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Eggers, S. et al. Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. Eur. J. Hum. Genet. 23, 486–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Auchus, R. J. & Miller, W. L. Defects in androgen biosynthesis causing 46,XY disorders of sexual development. Semin. Reprod. Med. 30, 417–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Khattab, A. et al. Pitfalls in hormonal diagnosis of 17-β hydroxysteroid dehydrogenase III deficiency. J. Pediatr. Endocrinol. Metab. http://dx.doi.org/10.1515/jpem-2014-0295.

  69. Wu, J. Y. et al. A novel NR5A1 variant in an infant with elevated testosterone from an Australasian cohort of 46,XY patients with disorders of sex development. Clin. Endocrinol. (Oxf.) 78, 545–550 (2013).

    Article  CAS  Google Scholar 

  70. Mendonca, B. B., Domenice, S., Arnhold, I. J. & Costa, E. M. 46,XY disorders of sex development (DSD). Clin. Endocrinol. (Oxf.) 70, 173–187 (2009).

    CAS  Google Scholar 

  71. Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 1419–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Melo, K. F. et al. Clinical, hormonal, behavioral, and genetic characteristics of androgen insensitivity syndrome in a Brazilian cohort: five novel mutations in the androgen receptor gene. J. Clin. Endocrinol. Metab. 88, 3241–3250 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Jaaskelainen, J. Molecular biology of androgen insensitivity. Mol. Cell. Endocrinol. 352, 4–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Hughes, I. A. & Deeb, A. Androgen resistance. Best Pract. Res. Clin. Endocrinol. Metab. 20, 577–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Robyr, D., Wolffe, A. P. & Wahli, W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14, 329–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Weng, Y. et al. Analysis of testosterone and dihydrotestosterone in mouse tissues by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 402, 121–128 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shiraishi, S. et al. Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. Clin. Chem. 54, 1855–1863 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Hochberg, Z. et al. Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5 α-reductase 2 deficiency. J. Clin. Endocrinol. Metab. 81, 2821–2827 (1996).

    CAS  PubMed  Google Scholar 

  79. Mendonca, B. B. et al. Male pseudohermaphroditism due to steroid 5 α-reductase 2 deficiency. Diagnosis, psychological evaluation, and management. Medicine (Baltimore) 75, 64–76 (1996).

    Article  CAS  Google Scholar 

  80. Hiort, O. et al. Nonisotopic single strand conformation analysis of the 5 α-reductase type 2 gene for the diagnosis of 5 α-reductase deficiency. J. Clin. Endocrinol. Metab. 81, 3415–3418 (1996).

    CAS  PubMed  Google Scholar 

  81. Thiele, S., Hoppe, U., Holterhus, P. M. & Hiort, O. Isoenzyme type 1 of 5α-reductase is abundantly transcribed in normal human genital skin fibroblasts and may play an important role in masculinization of 5α-reductase type 2 deficient males. Eur. J. Endocrinol. 152, 875–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Maimoun, L. et al. Undervirilization in XY newborns may hide a 5α-reductase deficiency: report of three new SRD5A2 gene mutations. Int. J. Androl. 33, 841–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Chan, A. O. et al. Diagnosis of 5α-reductase 2 deficiency: is measurement of dihydrotestosterone essential? Clin. Chem. 59, 798–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Cohen-Kettenis, P. T. Gender change in 46,XY persons with 5α-reductase-2 deficiency and 17β-hydroxysteroid dehydrogenase-3 deficiency. Arch. Sex. Behav. 34, 399–410 (2005).

    Article  PubMed  Google Scholar 

  85. Cassia Amaral, R. et al. Quality of life in a large cohort of adult Brazilian patients with 46,XX and 46,XY disorders of sex development from a single tertiary centre. Clin. Endocrinol. (Oxf.) 82, 274–279 (2015).

    Article  Google Scholar 

  86. Cassia Amaral, R. et al. Quality of life of patients with 46,XX and 46,XY disorders of sex development. Clin. Endocrinol. (Oxf.) 82, 274–279 (2015).

    Article  Google Scholar 

  87. Costa, E. M., Domenice, S., Sircili, M. H., Inacio, M. & Mendonca, B. B. DSD due to 5α-reductase 2 deficiency—from diagnosis to long term outcome. Semin. Reprod. Med. 30, 427–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Hayashi, G. et al. Weight-adjusted neonatal 17OH-progesterone cutoff levels improve the efficiency of newborn screening for congenital adrenal hyperplasia. Arq. Bras. Endocrinol. Metabol. 55, 632–637 (2012).

    Article  Google Scholar 

  89. Silveira, E. L. et al. Molecular analysis of CYP21A2 can optimize the follow-up of positive results in newborn screening for congenital adrenal hyperplasia. Clin. Genet. 76, 503–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Sarafoglou, K., Lorentz, C. P., Otten, N., Oetting, W. S. & Grebe, S. K. Molecular testing in congenital adrenal hyperplasia due to 21α-hydroxylase deficiency in the era of newborn screening. Clin. Genet. 82, 64–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Forest, M. G., Morel, Y. & David, M. Prenatal treatment of congenital adrenal hyperplasia. Trends Endocrinol. Metab. 9, 284–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. New, M. I., Abraham, M., Yuen, T. & Lekarev, O. An update on prenatal diagnosis and treatment of congenital adrenal hyperplasia. Semin. Reprod. Med. 30, 396–399 (2012).

    Article  PubMed  Google Scholar 

  93. David, M. & Forest, M. G. Prenatal treatment of congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency. J. Pediatr. 105, 799–803 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Tardy-Guidollet, V. et al. New management strategy of pregnancies at risk of congenital adrenal hyperplasia using fetal sex determination in maternal serum: French cohort of 258 cases (2002–2011). J. Clin. Endocrinol. Metab. 99, 1180–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. New, M. I. et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J. Clin. Endocrinol. Metab. 99, E1022–E1030 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. New, M. I. et al. Prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies. J. Clin. Endocrinol. Metab. 86, 5651–5657 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Hirvikoski, T. et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92, 542–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Speiser, P. W. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 4133–4160 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wudy, S. A., Hartmann, M. F., Draper, N., Stewart, P. M. & Arlt, W. A male twin infant with skull deformity and elevated neonatal 17-hydroxyprogesterone: a prismatic case of P450 oxidoreductase deficiency. Endocr. Res. 30, 957–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Johannsen, T. H. et al. Delayed diagnosis of congenital adrenal hyperplasia with salt wasting due to type II 3β-hydroxysteroid dehydrogenase deficiency. J. Clin. Endocrinol. Metab. 90, 2076–2080 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Nordenstrom, A., Forest, M. G. & Wedell, A. A case of 3β-hydroxysteroid dehydrogenase type II (HSD3B2) deficiency picked up by neonatal screening for 21-hydroxylase deficiency: difficulties and delay in etiologic diagnosis. Horm. Res. 68, 204–208 (2007).

    PubMed  Google Scholar 

  102. Jeandron, D. D. & Sahakitrungruang, T. A novel homozygous Q334X mutation in the HSD3B2 gene causing classic 3β-hydroxysteroid dehydrogenase deficiency: an unexpected diagnosis after a positive newborn screen for 21-hydroxylase deficiency. Horm. Res. Paediatr. 77, 334–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Scott, R. R., Gomes, L. G., Huang, N., Van Vliet, G. & Miller, W. L. Apparent manifesting heterozygosity in P450 oxidoreductase deficiency and its effect on coexisting 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92, 2318–2322 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ergun-Longmire, B. et al. Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J. Pediatr. Endocrinol. Metab. 18, 739–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Fechner, P. Y. et al. The role of the sex-determining region Y gene in the etiology of 46,XX maleness. J. Clin. Endocrinol. Metab. 76, 690–695 (1993).

    CAS  PubMed  Google Scholar 

  106. Ferguson-Smith, M. A. X-Y chromosomal interchange in the aetiology of true hermaphroditism and of XX Klinefelter's syndrome. Lancet 2, 475–476 (1966).

    Article  CAS  PubMed  Google Scholar 

  107. Maciel-Guerra, A. T. et al. XX maleness and XX true hermaphroditism in SRY-negative monozygotic twins: additional evidence for a common origin. J. Clin. Endocrinol. Metab. 93, 339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Cox, J. J., Willatt, L., Homfray, T. & Woods, C. G. A SOX9 duplication and familial 46,XX developmental testicular disorder. N. Engl. J. Med. 364, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Tomaselli, S. et al. Solution structure of the supramolecular adduct between a liver cytosolic bile acid binding protein and a bile acid-based gadolinium(III)-chelate, a potential hepatospecific magnetic resonance imaging contrast agent. J. Med. Chem. 51, 6782–6792 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Moalem, S. et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am. J. Med. Genet. A 158A, 1759–1764 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lonardo, F. et al. Prenatal diagnosis of 46,XX testicular DSD. Molecular, cytogenetic, molecular-cytogenetic, and ultrasonographic evaluation. Prenat. Diagn. 29, 998–1001 (2009).

    Article  PubMed  Google Scholar 

  112. Ledig, S., Hiort, O., Wunsch, L. & Wieacker, P. Partial deletion of DMRT1 causes 46,XY ovotesticular disorder of sexual development. Eur. J. Endocrinol. 167, 119–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Ostrer, H. 46,XY disorder of sex development and 46,XY complete gonadal dysgenesis. GeneReviews [online], (2009).

    Google Scholar 

  114. Dickerson, C. An overview of prenatal genetic screening and diagnostic testing. NC Med. J. 74, 518–521 (2013).

    Google Scholar 

  115. McPherson, E. Genetic diagnosis and testing in clinical practice. Clin. Med. Res. 4, 123–129 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.B.M. and T.A.S.S.B. are partially supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (3057-43/2011-2 and 308318/2012-9, respectively). They are also partially supported by grants from Fundação de Amparo a Pesquisa do Estado de Sao Paulo FAPESP 2013/02162-8 and of the Nucleo de Estudos e Terapia Celular e Molecular (NETCEM), J.C.A. is a Wellcome Trust Senior Research Fellow in Clinical Science (098513). The authors acknowledge A.A.L. Jorge and A.M. Lerario for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

J.A.C., S.D. and B.B.M. researched data for the article, contributed to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission. T.A.S.S.B. and M.Y.N. researched data for the article, contributed to discussions of the content and wrote the article.

Corresponding author

Correspondence to Berenice B. Mendonca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achermann, J., Domenice, S., Bachega, T. et al. Disorders of sex development: effect of molecular diagnostics. Nat Rev Endocrinol 11, 478–488 (2015). https://doi.org/10.1038/nrendo.2015.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing