Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards improved genetic diagnosis of human differences of sex development

Abstract

Despite being collectively among the most frequent congenital developmental conditions worldwide, differences of sex development (DSD) lack recognition and research funding. As a result, what constitutes optimal management remains uncertain. Identification of the individual conditions under the DSD umbrella is challenging and molecular genetic diagnosis is frequently not achieved, which has psychosocial and health-related repercussions for patients and their families. New genomic approaches have the potential to resolve this impasse through better detection of protein-coding variants and ascertainment of under-recognized aetiology, such as mosaic, structural, non-coding or epigenetic variants. Ultimately, it is hoped that better outcomes data, improved understanding of the molecular causes and greater public awareness will bring an end to the stigma often associated with DSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disruption of processes in many different organs can result in isolated and syndromic forms of DSD.

Similar content being viewed by others

References

  1. Lee, P. A. et al. Consensus statement on management of intersex disorders. Pediatrics 118, e488–e500 (2006). This seminal publication of the 2005 International Consensus Conference on Management of Intersex Disorders, convened by the Lawson Wilkins Pediatric Endocrine Society (LWPES) and the European Society for Paediatric Endocrinology (ESPE), coined the term DSD and laid out the current framework for nomenclature, diagnosis and interdisciplinary management of DSD.

    Article  PubMed  Google Scholar 

  2. Parivesh, A., Barseghyan, H., Délot, E. & Vilain, E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr. Top. Dev. Biol. 134, 317–375 (2019). This review of the genetic aetiology and testing of DSD provides a comprehensive analysis of the available evidence of pathogenicity, and the current limitations of the ClinVar database, for 69 DSD genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Délot, E. C. & Vilain, E. in Yen & Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management 8th edn (Strauss, J. F. III & Barbieri, R. L.) 365–393 (Elsevier, 2018). This textbook chapter details clinical DSD categories, aetiology, testing and management approaches.

  4. Hutson, J. M. & Kearsey, I. Disorders of sex development (DSD): not only babies with ambiguous genitalia. A practical guide for surgeons. Pediatr. Surg. Int. 33, 355–361 (2017).

    Article  PubMed  Google Scholar 

  5. Délot, E. C. et al. Genetics of disorders of sex development: the DSD-TRN experience. Endocrinol. Metab. Clin. North. Am. 46, 519–537 (2017). This publication lays out the principles of the practice standardization effort undertaken by the DSD-TRN and includes a report of early genetics data from its registry.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmed, S. F., Bryce, J. & Hiort, O. International networks for supporting research and clinical care in the field of disorders of sex development. Endocr. Dev. 27, 284–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, P. A. et al. Global disorders of sex development update since 2006: perceptions, approach and care. Horm. Res. Paediatr. 85, 158–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sandberg, D. E., Gardner, M., Callens, N. & Mazur, T. Interdisciplinary care in disorders/differences of sex development (DSD): the psychosocial component of the DSD-Translational Research Network. Am. J. Med. Genet. C. Semin. Med. Genet. 175, 279–292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gomes, N. L., Chetty, T., Jorgensen, A. & Mitchell, R. T. Disorders of sex development-novel regulators, impacts on fertility, and options for fertility preservation. Int. J. Mol. Sci. 21, 2282 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  10. Johnson, E. K. et al. Gonadal tissue cryopreservation for children with differences of sex development. Horm. Res. Paediatr. 92, 84–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Looijenga, L. H. J., Kao, C. S. & Idrees, M. T. Predicting gonadal germ cell cancer in people with disorders of sex development; insights from developmental biology. Int. J. Mol. Sci. 20, 5017 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  12. Morin, J. et al. Oncologic outcomes of pre-malignant and invasive germ cell tumors in patients with differences in sex development — a systematic review. J. Pediatr. Urol. 16, 576–582 (2020).

    Article  PubMed  Google Scholar 

  13. Adam, M. P. & Vilain, E. Emerging issues in disorders/differences of sex development (DSD). Am. J. Med. Genet. C. Semin. Med. Genet. 175, 249–252 (2017).

    Article  PubMed  Google Scholar 

  14. Gainotti, S. et al. Meeting patients’ right to the correct diagnosis: ongoing international initiatives on undiagnosed rare diseases and ethical and social issues. Int. J. Environ. Res. Public Health 15, 2072 (2018).

    Article  PubMed Central  Google Scholar 

  15. Austin, C. P. et al. Future of rare diseases research 2017–2027: an IRDiRC perspective. Clin. Transl. Sci. 11, 21–27 (2018).

    Article  PubMed  Google Scholar 

  16. Croft, B., Ayers, K., Sinclair, A. & Ohnesorg, T. Review disorders of sex development: the evolving role of genomics in diagnosis and gene discovery. Birth Defects Res. C. Embryo Today Rev. 108, 337–350 (2016).

    CAS  Google Scholar 

  17. Ahmed, F. et al. Disorders of sex development: advances in genetic diagnosis and challenges in management. Adv. Genomics Genet. 2015, 165–177 (2015).

    Article  Google Scholar 

  18. Ohnesorg, T., Vilain, E. & Sinclair, A. H. The genetics of disorders of sex development in humans. Sex. Dev. 8, 262–272 (2014).

    Article  PubMed  Google Scholar 

  19. Ono, M. & Harley, V. R. Disorders of sex development: new genes, new concepts. Nat. Rev. Endocrinol. 9, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Koopman, P., Sinclair, A. & Lovell-Badge, R. Of sex and determination: marking 25 years of Randy, the sex-reversed mouse. Development 143, 1633–1637 (2016). This article provides a lively account of the characterization of SRY as the key mammalian gonadal sex determination gene, told by three of the main protagonists.

    Article  CAS  PubMed  Google Scholar 

  21. Baxter, R. M. et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J. Clin. Endocrinol. Metab. 100, E333–E344 (2015). This article reports an early use of clinical exome sequencing for DSD diagnosis on a cohort of 46,XY individuals with various DSD conditions.

    Article  CAS  PubMed  Google Scholar 

  22. Eggers, S. et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 17, 243 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Heeley, J. M. et al. Risk association of congenital anomalies in patients with ambiguous genitalia: a 22-year single-center experience. J. Pediatr. Urol. 14, 153.e1–153.e7 (2018).

    Article  Google Scholar 

  24. Koopman, P. The curious world of gonadal development in mammals. Curr. Top. Dev. Biol. 116, 537–545 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. León, N. Y., Reyes, A. P. & Harley, V. R. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol. 7, 560–574 (2019). This article describes a recent comprehensive clinical algorithm that guides diagnosis and management of newborns with ambiguous genitalia.

    Article  PubMed  Google Scholar 

  26. Audi, L. et al. Genetics in endocrinology: approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 179, R197–R206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Délot, E. C. & Vilain, E. J. Nonsyndromic 46,XX testicular disorders of sex development. GeneReviews [online], https://www.ncbi.nlm.nih.gov/books/NBK1416/ (updated 7 May 2015).

  28. Mohnach, L., Fechner, P. Y. & Keegan, C. E. Nonsyndromic disorders of testicular development. GeneReviews [online], https://pubmed.ncbi.nlm.nih.gov/20301714/ (updated 2 Jun 2016).

  29. Alhomaidah, D., McGowan, R. & Ahmed, S. F. The current state of diagnostic genetics for conditions affecting sex development. Clin. Genet. 91, 157–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Cools, M. et al. Caring for individuals with a difference of sex development (DSD): a consensus statement. Nat. Rev. Endocrinol. 14, 415–429 (2018). This consensus statement by European workgroups details approaches and data collection processes for management of individuals with DSD throughout their lifespan.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Speiser, P. W. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 103, 4043–4088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Speiser, P. W. et al. Newborn screening protocols and positive predictive value for congenital adrenal hyperplasia vary across the United States. Int. J. Neonatal Screen. 6, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krone, N. et al. Genotype–phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital adrenal Hhyperplasia Adult Study Executive (CaHASE) cohort. J. Clin. Endocrinol. Metab. 98, E346–E354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smet, M. E., Scott, F. P. & McLennan, A. C. Discordant fetal sex on NIPT and ultrasound. Prenat. Diagn. 40, 1353–1365 (2020).

    Article  PubMed  Google Scholar 

  35. Byers, H. M. et al. Discordant sex between fetal screening and postnatal phenotype requires evaluation. J. Perinatol. 39, 28–33 (2019).

    Article  PubMed  Google Scholar 

  36. Dhamankar, R., DiNonno, W., Martin, K. A., Demko, Z. P. & Gomez-Lobo, V. Fetal sex results of noninvasive prenatal testing and differences with ultrasonography. Obstet. Gynecol. 135, 1198–1206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dey, M., Sharma, S. & Aggarwal, S. Prenatal screening methods for aneuploidies. N. Am. J. Med. Sci. 5, 182–190 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng, C. et al. Clinical application of noninvasive prenatal screening for sex chromosome aneuploidies in 50,301 pregnancies: initial experience in a Chinese hospital. Sci. Rep. 9, 7767 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Neufeld-Kaiser, W. A., Cheng, E. Y. & Liu, Y. J. Positive predictive value of non-invasive prenatal screening for fetal chromosome disorders using cell-free DNA in maternal serum: independent clinical experience of a tertiary referral center. BMC Med. 13, 129 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang, Y. et al. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol. Cytogenet. 13, 10 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Croft, B., Ohnesorg, T. & Sinclair, A. H. The role of copy number variants in disorders of sex development. Sex. Dev. 12, 19–29 (2018). This article provides a comprehensive literature review of the impact of structural variants in DSD aetiology.

    Article  CAS  PubMed  Google Scholar 

  42. Ledig, S. et al. Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum. Reprod. 25, 2637–2646 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Tannour-Louet, M. et al. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS ONE 5, e15392 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Harrison, S. M., Seideman, C. & Baker, L. A. DNA copy number variations in patients with persistent cloaca. J. Urol. 191, 1543–1546 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Backhouse, B. et al. Identification of candidate genes for Mayer–Rokitansky–Küster–Hauser syndrome using genomic approaches. Sex. Dev. 13, 26–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi, K. et al. Exome and copy number variation analyses of Mayer–Rokitansky–Küster–Hauser syndrome. Hum. Genome Var. 5, 27 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Amarillo, I. E. et al. Integrated small copy number variations and epigenome maps of disorders of sex development. Hum. Genome Var. 3, 16012 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. New, M. I. et al. Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA 110, 2611–2616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Narasimhan, M. L. & Khattab, A. Genetics of congenital adrenal hyperplasia and genotype–phenotype correlation. Fertil. Steril. 111, 24–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med. 12, 91 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arboleda, V. A. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin. Genet. 83, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, J. H. et al. Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development. Mol. Cell. Endocrinol. 444, 19–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Özen, S. et al. Rapid molecular genetic diagnosis with next-generation sequencing in 46,XY disorders of sex development cases: efficiency and cost assessment. Horm. Res. Paediatr. 87, 81–87 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Fan, Y. et al. Diagnostic application of targeted next-generation sequencing of 80 genes associated with disorders of sexual development. Sci. Rep. 7, 44536 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barseghyan, H., Delot, E. C. & Vilain, E. New technologies to uncover the molecular basis of disorders of sex development. Mol. Cell. Endocrinol. 468, 60–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hughes, L. A. et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocr. Connect. 8, 100–110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buonocore, F. & Achermann, J. C. Primary adrenal insufficiency: new genetic causes and their long-term consequences. Clin. Endocrinol. 92, 11–20 (2020).

    Article  Google Scholar 

  58. Barseghyan, H., Delot, E. & Vilain, E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm. Metab. Res. 47, 312–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Stavropoulos, D. J. et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. NPJ Genom. Med. 1, 15012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 19, 253–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl Acad. Sci. USA 112, 5473–5478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barbitoff, Y. A. et al. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Sci. Rep. 10, 2057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ravishankar, A., Derraik, J. G. B., Mathai, S., Cutfield, W. S. & Hofman, P. L. Karyotypes, confined blood chimerism, and confusion: a case of genetic sex mislabelling and its potential consequences. N. Z. Med. J. 128, 62–65 (2015).

    PubMed  Google Scholar 

  64. Strain, L., Dean, J. C. S., Hamilton, M. P. R. & Bonthron, D. T. A true hermaphrodite chimera resulting from embryo amalgamation after in vitro fertilization. N. Engl. J. Med. 338, 166–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Hatano, M., Fukuzawa, R. & Hasegawa, Y. The mosaicism ratio of 45,X may explain the phenotype in a case of mixed gonadal dysgenesis. Sex. Dev. 12, 175–179 (2018).

    Article  PubMed  Google Scholar 

  66. Boucekkine, C. et al. The sole presence of the testis-determining region of the Y chromosome (SRY) in 46,XX patients is associated with phenotypic variability. Horm. Res. Paediatr. 37, 236–240 (1992).

    Article  CAS  Google Scholar 

  67. Isidor, B. et al. Familial frameshift SRY mutation inherited from a mosaic father with testicular dysgenesis syndrome. J. Clin. Endocrinol. Metab. 94, 3467–3471 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Murdock, D. R. et al. Whole-exome sequencing for diagnosis of Turner syndrome: toward next-generation sequencing and newborn screening. J. Clin. Endocrinol. Metab. 102, 1529–1537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hu, P. et al. Low-level parental mosaicism affects the recurrence risk of holoprosencephaly. Genet. Med. 21, 1015–1020 (2019).

    Article  PubMed  Google Scholar 

  70. Camats, N., Fernández-Cancio, M., Audí, L., Schaller, A. & Flück, C. E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur. J. Hum. Genet. 26, 1329–1338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Werner, R. et al. New NR5A1 mutations and phenotypic variations of gonadal dysgenesis. PLoS ONE 12, e0176720 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Flück, C. E. et al. Broad phenotypes of disorders/differences of sex development in MAMLD1 patients through oligogenic disease. Front. Genet. 10, 746 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lindstrand, A. et al. Copy-number variation contributes to the mutational load of Bardet–Biedl syndrome. Am. J. Hum. Genet. 99, 318–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baetens, D. et al. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genet. Med. 19, 367–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019). This landmark benchmarking study compares the respective outputs of LRS, SRS and OGM data sets for detection of structural variants of various sizes and types on the same genome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Chan, S. et al. Structural variation detection and analysis using bionano optical mapping. Methods Mol. Biol. 1833, 193–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Mak, A. C. Y. et al. Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics 202, 351–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Levy-Sakin, M. et al. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat. Commun. 10, 1025 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bocklandt, S., Hastie, A. & Cao, H. Bionano genome mapping: high-throughput, ultra-long molecule genome analysis system for precision genome assembly and haploid-resolved structural variation discovery. Adv. Exp. Med. Biol. 1129, 97–118 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Jaratlerdsiri, W. et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer. Oncotarget 8, 23588–23602 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Du, C. et al. A tandem duplication of BRCA1 exons 1–19 through DHX8 exon 2 in four families with hereditary breast and ovarian cancer syndrome. Breast Cancer Res. Treat. 172, 561–569 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50, 1388–1398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barseghyan, H. et al. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med. 9, 1–11 (2017). This paper explains the OGM technology and demonstrates its clinical utility for clinical diagnosis in human disease on a cohort of individuals with Duchenne muscular dystrophy.

    Article  CAS  Google Scholar 

  86. Sharim, H. et al. Long-read single-molecule maps of the functional methylome. Genome Res. 29, 646–656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rieken, A., Bossler, A. D., Mathews, K. D. & Moore, S. A. CLIA laboratory testing for facioscapulohumeral dystrophy (FSHD): a retrospective analysis. Neurology 96, e1054–e1062 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Bhattacharya, S., Barseghyan, H., Délot, E. C. & Vilain, E. nanotatoR: a tool for enhanced annotation of genomic structural variants. BMC Genomics 22, 10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mantere, T., Kersten, S. & Hoischen, A. Long-read sequencing emerging in medical genetics. Front. Genet. 10, 426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol. 20, 246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arboleda, V. A. et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 44, 788–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. García-Acero, M., Moreno, O., Suárez, F. & Rojas, A. Disorders of sexual development: current status and progress in the diagnostic approach. Curr. Urol. 13, 169–178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gimelli, G., Giorda, R., Beri, S., Ginielli, S. & Zuffardi, O. A 46,X,inv(Y) young woman with gonadal dysgenesis and gonadoblastoma: cytogenetics, molecular, and methylation studies. Am. J. Med. Genet. 140 A, 40–45 (2006).

    Article  CAS  Google Scholar 

  96. Aref-Eshghi, E. et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am. J. Hum. Genet. 104, 685–700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yang, Y. & Scott, S. A. in Methods in Molecular Biology Vol. 1654 (eds Kaufmann, M., Klinger, C. & Savelsbergh, A.) 125–134 (Springer, 2017).

  99. Beaulaurier, J. et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun. 6, 7438 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Gouil, Q. & Keniry, A. Latest techniques to study DNA methylation. Essays Biochem. 63, 639–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Y. et al. Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biol. 21, 54 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). This joint report from the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) established the criteria and guidelines currently used by all accredited clinical sequencing facilities and research laboratories to interpret and classify sequence variants (often called the ACMG criteria).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gelman, H. et al. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med. 11, 85 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kopanos, C. et al. VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  105. Nykamp, K. et al. Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria. Genet. Med. 19, 1105–1117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gulía, C. et al. in European Review for Medical and Pharmacological Sciences Vol. 22 (eds Adam, M. P. et al.) 3873–3887 (Univ. of Washington, Seattle, 2018).

  107. Imbeaud, S. et al. Molecular genetics of the persistent Müllerian duct syndrome: a study of 19 families. Hum. Mol. Genet. 3, 125–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Imbeaud, S. et al. A 27 base-pair deletion of the anti-Mullerian type II receptor gene is the most common cause of the persistent Mullerian duct syndrome. Hum. Mol. Genet. 5, 1269–1277 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  110. Baetens, D., Mendonça, B. B., Verdin, H., Cools, M. & De Baere, E. Non-coding variation in disorders of sex development. Clin. Genet. 91, 163–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Croft, B. et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat. Commun. 9, 5319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hornig, N. C. et al. A recurrent germline mutation in the 5′UTR of the androgen receptor causes complete androgen insensitivity by activating aberrant uORF translation. PLoS ONE 11, e0154158 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Smedley, D. et al. A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99, 595–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Caron, B., Luo, Y. & Rausell, A. NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selection signals in humans. Genome Biol. 20, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kwasnieski, J. C., Fiore, C., Chaudhari, H. G. & Cohen, B. A. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 24, 1595–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. ENCODE Project Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  118. Pranzatelli, T. J. F., Michael, D. G. & Chiorini, J. A. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference. BMC Genomics 19, 563 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Shen, S. Q. et al. Massively parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res. 26, 238–255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharpe, R. M., McKinnell, C., Kivlin, C. & Fisher, J. S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Bernard, P., Sim, H., Knower, K., Vilain, E. & Harley, V. Human SRY inhibits β-catenin-mediated transcription. Int. J. Biochem. Cell Biol. 40, 2889–2900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bernard, P. et al. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology 153, 901–912 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Alankarage, D. et al. SOX9 regulates expression of the male fertility gene Ets variant factor 5 (ETV5) during mammalian sex development. Int. J. Biochem. Cell Biol. 79, 41–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Lee, J. et al. Sex-specific neuroprotection by inhibition of the Y-chromosome gene, SRY, in experimental Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 16577–16582 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Knower, K. C. et al. Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS ONE 6, e17751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matson, C. K. et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Rahmoun, M. et al. In mammalian foetal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Nucleic Acids Res. 45, 7191–7211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liang, J. et al. Induction of Sertoli-like cells from human fibroblasts by NR5A1 and GATA4. eLife 8, e48767 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rodríguez Gutiérrez, D., Eid, W. & Biason-Lauber, A. A human gonadal cell model from induced pluripotent stem cells. Front. Genet. 9, 1–14 (2018).

    Article  CAS  Google Scholar 

  131. Hannema, S. E. & De Rijke, Y. B. Improving laboratory assessment in disorders of sex development through a multidisciplinary network. Sex. Dev. 12, 135–139 (2018).

    Article  PubMed  Google Scholar 

  132. Kulle, A. et al. Steroid hormone analysis in diagnosis and treatment of DSD: position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 176, P1–P9 (2017). This position paper reports the recommendations developed by the European Cooperation in Science and Technology (EU-COST) workgroup, DSDnet, for harmonization of steroid hormone analysis in diagnosis and treatment of DSD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rolston, A. M. et al. Disorders of sex development (DSD): clinical service delivery in the United States. Am. J. Med. Genet. C. Semin. Med. Genet. 175, 268–278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kyriakou, A. et al. Current models of care for disorders of sex development — results from an International survey of specialist centres. Orphanet J. Rare Dis. 11, 155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vora, K. A. & Srinivasan, S. A guide to differences/disorders of sex development/intersex in children and adolescents. Aust. J. Gen. Pract. 49, 417–422 (2020).

    Article  PubMed  Google Scholar 

  136. Farnaes, L. et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom. Med. 3, 10 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Meng, L. et al. Use of exome sequencing for infants in intensive care units ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 171, e173438–e173438 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Smith, L. D., Willig, L. K. & Kingsmore, S. F. Whole-exome sequencing and whole-genome sequencing in critically ill neonates suspected to have single-gene disorders. Cold Spring Harb. Perspect. Med. 6, a023168 (2016).

    Article  PubMed Central  Google Scholar 

  139. Chung, C. C. Y. et al. Rapid whole-exome sequencing facilitates precision medicine in paediatric rare disease patients and reduces healthcare costs. Lancet Reg. Health West. Pac. 1, 100001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mestek-Boukhibar, L. et al. Rapid paediatric sequencing (RaPS): comprehensive real-life workflow for rapid diagnosis of critically ill children. J. Med. Genet. 55, 721–728 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Lunke, S. et al. Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian public health care system. J. Am. Med. Assoc. 323, 2503–2511 (2020).

    Article  CAS  Google Scholar 

  142. Balogh, E. P., Miller, B. T., Ball, J. R. & National Academies of Sciences Medicine and Engineering. in Improving Diagnosis in Health Care (eds Balogh, E. P., Miller, B. T. & Ball, J. R.) (National Academies Press, 2015).

  143. Sultan, C. et al. Disorders of androgen action. Semin. Reprod. Med. 20, 217–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Lek, N. et al. Low frequency of androgen receptor gene mutations in 46 XY DSD, and fetal growth restriction. Arch. Dis. Child. 99, 358–361 (2014).

    Article  PubMed  Google Scholar 

  145. Eozenou, C. et al. Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene. Proc. Natl Acad. Sci. USA 117, 13680–13688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hutson, J. M., Grover, S. R., O’Connell, M. & Pennell, S. D. Malformation syndromes associated with disorders of sex development. Nat. Rev. Endocrinol. 10, 476–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Cox, K. et al. Novel associations in disorders of sex development: findings from the I-DSD registry. J. Clin. Endocrinol. Metab. 99, E348–E355 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Ferraz-de-Souza, B., Lin, L. & Achermann, J. C. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol. Cell. Endocrinol. 336, 198–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Philibert, P. et al. Predominant Sertoli cell deficiency in a 46,XY disorders of sex development patient with a new NR5A1/SF-1 mutation transmitted by his unaffected father. Fertil. Steril. 95, 1788.e5–1788.e9 (2011).

    Article  Google Scholar 

  150. Flück, C. et al. Standardised data collection for clinical follow-up and assessment of outcomes in differences of sex development (DSD): recommendations from the COST action DSDnet. Eur. J. Endocrinol. 181, 545–564 (2019).

    Article  PubMed  Google Scholar 

  151. Röhle, R. et al. Participation of adults with disorders/differences of sex development (DSD) in the clinical study dsd-LIFE: design, methodology, recruitment, data quality and study population. BMC Endocr. Disord. 17, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Fausto-Sterling, A. Sexing the Body: Gender Politics and the Construction of Sexuality (Basic Books, 2000).

  153. Pohl, H. G., Joyce, G. F., Wise, M. & Cilento, B. G. Cryptorchidism and hypospadias. J. Urol. 177, 1646–1651 (2007).

    Article  PubMed  Google Scholar 

  154. Kelly, J. Environmental scan of cystic fibrosis research worldwide. J. Cyst. Fibros. 16, 367–370 (2017).

    Article  PubMed  Google Scholar 

  155. Biason-Lauber, A., Konrad, D., Meyer, M., DeBeaufort, C. & Schoenle, E. J. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Khattab, A. et al. Pitfalls in hormonal diagnosis of 17-β hydroxysteroid dehydrogenase III deficiency. J. Pediatr. Endocrinol. Metab. 28, 623–628 (2015).

    Article  PubMed  Google Scholar 

  157. Balducci, R. et al. Familial male pseudohermaphroditism with gynaecomastia due to 17β-hydroxysteroid dehydrogenase deficiency. A report of 3 cases. Clin. Endocrinol. 23, 439–444 (1985).

    Article  CAS  Google Scholar 

  158. Boehmer, A. L. M. et al. 17β-Hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations. J. Clin. Endocrinol. Metab. 84, 4713–4721 (1999).

    CAS  PubMed  Google Scholar 

  159. Chuang, J. et al. Complexities of gender assignment in 17β-hydroxysteroid dehydrogenase type 3 deficiency: is there a role for early orchiectomy? Int. J. Pediatr. Endocrinol. 2013, 15 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Elsas, L. J. et al. Gender verification of female athletes. Genet. Med. 2, 249–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Ha, N. Q. et al. Hurdling over sex? sport, science, and equity. Arch. Sex. Behav. 43, 1035–1042 (2014).

    Article  PubMed  Google Scholar 

  162. IAAF. Eligibility Regulations for the Female Classification (Athletes With Differences of Sex Development) 1–22 https://www.iaaf.org/download/download?filename=0c7ef23c-10e1-4025-bd0c-e9f3b8f9b158.pdf&urlslug=IAAF (1 November 2018).

  163. Bartolone, L., Smedile, G., Arcoraci, V., Trimarchi, F. & Benvenga, S. Extremely high levels of estradiol and testosterone in a case of polycystic ovarian syndrome. Hormone and clinical similarities with the phenotype of the α estrogen receptor null mice. J. Endocrinol. Invest. 23, 467–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Legro, R. S. et al. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J. Clin. Endocrinol. Metab. 95, 5305–5313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vilain, E. & Martinez-Patiño, M. J. Science’s place in shaping gender-based policies in athletics. Lancet 393, 1504 (2019).

    Article  PubMed  Google Scholar 

  166. International Olympic Committee. 2011 Olympic Charter 1–95 https://stillmed.olympic.org/media/DocumentLibrary/OlympicOrg/General/EN-Olympic-Charter.pdf (2011).

Download references

Acknowledgements

The authors thank P. Speiser for helpful discussions while preparing the case report for Box 2 and M. Almalvez for assistance with references and figures. E.C.D. and E.V. are supported in part by grant R01HD093450 (Disorders/Differences of Sex Development Translational Research Network, DSD-TRN) from the Eunice Kennedy Shriver National Institute of Child Health and Development.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eric Vilain.

Ethics declarations

Competing interests

E.V. has scientifically advised Bionano Genomics. E.C.D. declares no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks C. Flueck, A. Sinclair and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAS Executive Summary: https://www.tas-cas.org/fileadmin/user_upload/CAS_Executive_Summary__5794_.pdf

ClinGen consortium: http://clinicalgenome.org/

Cystic Fibrosis Foundation: https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/

Cystic Fibrosis Worldwide: https://www.cfww.org/

DSD-Life: https://www.dsd-life.eu/home/index.html

DSD/Primary adrenal deficiency WES-based test: https://www.radboudumc.nl/getmedia/ea3f05c7-2d81-4127-9d15-66aee97aff3e/DSDPRIMARYADRENALINSUFFICIENCY_DG300.aspx

DSD-TRN: https://dsdtrn.org

Franklin: https://franklin.genoox.com/clinical-db/home

Genoox sequence analysis platform: https://www.genoox.com/genoox-integrated-omsv-platform/

HIV.gov: https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics

I-DSD: https://home.i-dsd.org

IRDiRC: https://irdirc.org/about-us/vision-goals/

Leiden Open Variation Database: www.lovd.nl

PanelApp: https://panelapp.genomicsengland.co.uk/panels/9/

Parkinson’s Foundation: https://www.parkinson.org/Understanding-Parkinsons/Statistics

SVI General Recommendations for Using ACMG/AMP Criteria: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/

Supplementary information

Glossary

Positive predictive value

(PPV). In a clinical test, the ratio of the number of individuals confirmed to have the condition being tested for to those who tested positive with the test, irrespective of disease status. The PPV predicts the likelihood of someone who tests positive for having the condition.

Isodicentric Y

An abnormal Y chromosome resulting in two centromeres and two identical arms (Yp or Yq). Breakpoints vary, but individuals with two short (Yp) arms may have two copies of the testis-determining gene SRY (located in Yp11.2), whereas those with two long arms typically do not carry SRY.

Cell-free fetal DNA

Fragments of DNA of fetal origin circulating in the maternal blood during pregnancy, which can be tested to screen for aneuploidies such as trisomy 21 or to ascertain the sex chromosome complement of the fetus.

Copy number variants

(CNVs). Variants, typically larger than 50 bp, that result in increased or decreased ploidy, such as a deletion on an autosome resulting in a single copy of the region instead of two. CNVs are a type of structural variant.

Chimerism

A condition whereby two different genomes are found in a single individual, usually as a result of fusion of two zygotes during a twin pregnancy. Differences of sex development can arise when the two genomes have a different sex chromosome complement (XX and XY).

Mosaicism

A condition whereby two different genomes are found in a single individual, typically resulting from a post-fertilization mutation that is found only in the daughter cells of a subset of embryonic cells and thereby results in different phenotypic expression in different tissues. A frequent type of mosaicism associated with differences of sex development is Turner syndrome variants with 45,X/46,XY mosaic karyotypes.

Structural variants

Variants including copy number variants, insertions, translocations or inversions. They can be balanced (when the rearrangement does not result in loss or gain of genomic material) or unbalanced.

Epimutations

Heritable variants that modify gene expression through gain or loss of DNA methylation or other modification of chromatin without affecting the underlying DNA sequence.

Episignatures

Unique patterns of epigenetic variation (typically DNA methylation) occurring at multiple nucleotide locations throughout the genome. Episignatures have shown potential diagnostic value in syndromic conditions where no underlying genetic aetiology is found.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Délot, E.C., Vilain, E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet 22, 588–602 (2021). https://doi.org/10.1038/s41576-021-00365-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00365-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing