Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic control of typical and atypical sex development

Abstract

Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.

Key points

  • Sex development is a complex developmental process that relies on the actions of positive and negative genetic signals, and occurs in three sequential stages: development of the bipotential gonad, sex determination and sex differentiation.

  • Differences in sex development (DSD) are a heterogeneous group of conditions in which chromosomal, gonadal or anatomical sex is atypical. Most forms remain genetically unexplained.

  • DSD are classified according to sex chromosomal constitution into three types: sex chromosome DSD, 46,XY DSD and 46,XX DSD.

  • The most frequent 46,XY DSD is androgen insensitivity syndrome, and the most frequent 46,XX DSD is congenital adrenal hyperplasia.

  • Ongoing research is focused on the discovery of causative genes for DSD to improve clinical diagnosis and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gonadal ridge formation, primary gonadal sex determination and sex differentiation in humans.
Fig. 2: Genetic network required during testis and ovarian determination.
Fig. 3: 46,XY differences in sex development: androgen insensitivity syndrome, gonadal dysgenesis and 5α-reductase deficiency.
Fig. 4: 46,XX congenital adrenal hyperplasia.

Similar content being viewed by others

References

  1. Duranteau, L. et al. Participant- and clinician-reported long-term outcomes after surgery in individuals with complete androgen insensitivity syndrome. J. Pediatr. Adolesc. Gynecol. 34, 168–175 (2021).

    Article  PubMed  Google Scholar 

  2. Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A., Lawson Wilkins Pediatric Endocrine Society/European Society for Paediatric Endocrinology Consensus Group. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2, 148–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, P. A. et al. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 118, e488–e500 (2006).

    Article  PubMed  Google Scholar 

  4. Ahmed, S. F. et al. Society for endocrinology UK Guidance on the initial evaluation of a suspected difference or disorder of sex development (revised 2021). Clin. Endocrinol. 95, 818–840 (2021).

    Article  Google Scholar 

  5. Audi, L. et al. Genetics in endocrinology: approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 179, R197–R206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camats, N., Fernandez-Cancio, M., Audi, L., Schaller, A. & Fluck, C. E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur. J. Hum. Genet. 26, 1329–1338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leon, N. Y., Reyes, A. P. & Harley, V. R. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol. 7, 560–574 (2019).

    Article  PubMed  Google Scholar 

  8. Kavanaugh, G. L. et al. “Good practices” in pediatric clinical care for disorders/differences of sex development. Endocrine 73, 723–733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stevant, I. & Nef, S. Genetic control of gonadal sex determination and development. Trends Genet. 35, 346–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Lecluze, E. et al. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum. Reprod. 35, 1099–1119 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelm, D. & Englert, C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 16, 1839–1851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swain, A. & Lovell-Badge, R. Mammalian sex determination: a molecular drama. Genes Dev. 13, 755–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Bunce, C., McKey, J. & Capel, B. Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development https://doi.org/10.1242/dev.199208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Albrecht, K. H. & Eicher, E. M. Evidence that Sry is expressed in Pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 240, 92–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Hanley, N. A. et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech. Dev. 91, 403–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, Y.-C., Okumura, L. M. & Page, D. C. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 9, e1003629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richardson, B. E. & Lehmann, R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 11, 37–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kusaka, M. et al. Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151, 5893–5904 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jameson, S. A. et al. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet. 8, e1002575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostrer, H., Huang, H. Y., Masch, R. J. & Shapiro, E. A cellular study of human testis development. Sex. Dev. 1, 286–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schnabel, C. A., Selleri, L. & Cleary, M. L. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis 37, 123–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Capellini, T. D. et al. Scapula development is governed by genetic interactions of Pbx1 with its family members and with Emx2 via their cooperative control of Alx1. Development 137, 2559–2569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eozenou, C. et al. The TALE homeodomain of PBX1 is involved in human primary testis-determination. Hum. Mutat. 40, 1071–1076 (2019).

    CAS  PubMed  Google Scholar 

  26. Biason-Lauber, A., Konrad, D., Meyer, M., DeBeaufort, C. & Schoenle, E. J. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hart, D., Rodríguez Gutiérrez, D. & Biason-Lauber, A. CBX2 in DSD: the quirky kid on the block. Sex. Dev. 16, 162–170 (2022).

    Article  PubMed  Google Scholar 

  28. Birk, O. S. et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ono, M. & Harley, V. R. Disorders of sex development: new genes, new concepts. Nat. Rev. Endocrinol. 9, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Rey, R. A. & Grinspon, R. P. Normal male sexual differentiation and aetiology of disorders of sex development. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 221–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Sekido, R. & Lovell-Badge, R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 25, 19–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bhattacharya, I. & Dey, S. Emerging concepts on Leydig cell development in fetal and adult testis. Front. Endocrinol. 13, 1086276 (2022).

    Article  Google Scholar 

  33. Tingen, C., Kim, A. & Woodruff, T. K. The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol. Hum. Reprod. 15, 795–803 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kerr, J. B., Myers, M. & Anderson, R. A. The dynamics of the primordial follicle reserve. Reproduction 146, R205–R215 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Young, J. M. & McNeilly, A. S. Theca: the forgotten cell of the ovarian follicle. Reproduction 140, 489–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, C., Peng, J., Matzuk, M. M. & Yao, H. H. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat. Commun. 6, 6934 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hatzirodos, N., Hummitzsch, K., Irving-Rodgers, H. F. & Rodgers, R. J. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS ONE 10, e0119800 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haber, D. A. et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl Acad. Sci. USA 88, 9618–9622 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hammes, A. et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Sirokha, D. et al. A novel WT1 mutation identified in a 46,XX testicular/ovotesticular DSD patient results in the retention of Intron 9. Biology https://doi.org/10.3390/biology10121248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. She, Z. Y. & Yang, W. X. Sry and SoxE genes: how they participate in mammalian sex determination and gonadal development? Semin. Cell Dev. Biol. 63, 13–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Bashamboo, A. & McElreavey, K. Mechanism of sex determination in humans: insights from disorders of sex development. Sex. Dev. 10, 313–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. van der Zwan, Y. G., Biermann, K., Wolffenbuttel, K. P., Cools, M. & Looijenga, L. H. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur. Urol. 67, 692–701 (2015).

    Article  PubMed  Google Scholar 

  44. Bagheri-Fam, S. et al. Testis determination requires a specific FGFR2 isoform to repress FOXL2. Endocrinology 158, 3832–3843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barseghyan, H. et al. Identification of novel candidate genes for 46,XY disorders of sex development (DSD) using a C57BL/6J-Y (POS) mouse model. Biol. Sex. Differ. 9, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fabbri-Scallet, H. et al. Functional characterization of five NR5A1 gene mutations found in patients with 46,XY disorders of sex development. Hum. Mutat. 39, 114–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Granados, A. et al. MAP3K1-related gonadal dysgenesis: six new cases and review of the literature. Am. J. Med. Genet. C. Semin. Med. Genet. 175, 253–259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hagan, A. & Amarillo, I. E. Small copy-number variations involving genes of the FGF pathway in differences in sex development. Hum. Genome Var. 4, 17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kuroki, S. et al. Rescuing the aberrant sex development of H3K9 demethylase Jmjd1a-deficient mice by modulating H3K9 methylation balance. PLoS Genet. 13, e1007034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao, F. et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357, 717–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ottolenghi, C. et al. Foxl2 is required for commitment to ovary differentiation. Hum. Mol. Genet. 14, 2053–2062 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Chassot, A. A. et al. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Chassot, A. A., Gillot, I. & Chaboissier, M. C. R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148, R97–R110 (2014).

    Article  PubMed  Google Scholar 

  54. Ohnesorg, T., Vilain, E. & Sinclair, A. H. The genetics of disorders of sex development in humans. Sex. Dev. 8, 262–272 (2014).

    Article  PubMed  Google Scholar 

  55. Arboleda, V. A., Sandberg, D. E. & Vilain, E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat. Rev. Endocrinol. 10, 603–615 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pannetier, M., Chassot, A. A., Chaboissier, M. C. & Pailhoux, E. Involvement of FOXL2 and RSPO1 in ovarian determination, development, and maintenance in mammals. Sex. Dev. 10, 167–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Pannetier, M. et al. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol. 36, 399–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Tucker, E. J. The genetics and biology of FOXL2. Sex. Dev. 16, 184–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Pierson Smela, M. D. et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. Elife 12, e83291 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Edelsztein, N. Y., Valeri, C., Lovaisa, M. M., Schteingart, H. F. & Rey, R. A. AMH regulation by steroids in the mammalian testis: underlying mechanisms and clinical implications. Front. Endocrinol. 13, 906381 (2022).

    Article  Google Scholar 

  62. Jost, A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent. Progr Horm. Res. 8, 379–413 (1953).

    Google Scholar 

  63. Roly, Z. Y. et al. The cell biology and molecular genetics of Mullerian duct development. Wiley Interdiscip. Rev. Dev. Biol. 7, e310 (2018).

    Article  PubMed  Google Scholar 

  64. Rabinovici, J. & Jaffe, R. B. Development and regulation of growth and differentiated function in human and subhuman primate fetal gonads. Endocr. Rev. 11, 532–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Biason-Lauber, A. The battle of the sexes: human sex development and its disorders. Results Probl. Cell Differ. 58, 337–382 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Mendonca, B. B. et al. Steroid 5α-reductase 2 deficiency. J. Steroid Biochem. Mol. Biol. 163, 206–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Thankamony, A., Pasterski, V., Ong, K. K., Acerini, C. L. & Hughes, I. A. Anogenital distance as a marker of androgen exposure in humans. Andrology 4, 616–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tremblay, J. J. What signals testis descent? Biol. Reprod. 83, 687–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Miller, W. L. & Auchus, R. J. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 17, e3000198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Shaughnessy, P. J. et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 17, e3000002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bay, K., Main, K. M., Toppari, J. & Skakkebaek, N. E. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat. Rev. Urol. 8, 187–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Hutson, J. M. A biphasic model for the hormonal control of testicular descent. Lancet 2, 419–421 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. Heyns, C. F. The gubernaculum during testicular descent in the human fetus. J. Anat. 153, 93–112 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barteczko, K. J. & Jacob, M. I. The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv. Anat. Embryol. Cell Biol. 156, 1–98 (2000).

    Article  Google Scholar 

  75. Hutson, J. M. et al. The regulation of testicular descent and the effects of cryptorchidism. Endocr. Rev. 34, 725–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Josso, N. & Picard, J. Y. Genetics of anti-Mullerian hormone and its signaling pathway. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101634 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Rajpert-De Meyts, E. et al. Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J. Clin. Endocrinol. Metab. 84, 3836–3844 (1999).

    PubMed  Google Scholar 

  78. di Clemente, N., Racine, C., Pierre, A. & Taieb, J. Anti-mullerian hormone in female reproduction. Endocr. Rev. 42, 753–782 (2021).

    Article  PubMed  Google Scholar 

  79. Du, H. & Taylor, H. S. The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb. Perspect. Med. 6, a023002 (2015).

    Article  PubMed  Google Scholar 

  80. Blackless, M. et al. How sexually dimorphic are we? Review and synthesis. Am. J. Hum. Biol. 12, 151–166 (2000).

    Article  PubMed  Google Scholar 

  81. Sax, L. How common is intersex? A response to Anne Fausto-Sterling. J. Sex. Res. 39, 174–178 (2002).

    Article  PubMed  Google Scholar 

  82. Eggers, S. et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 17, 243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Conway, G. S. Differences in sex development (DSD) and related conditions: mechanisms, prevalences and changing practice. Int. J. Impot. Res. 35, 46–50 (2023).

    Article  PubMed  Google Scholar 

  84. Thyen, U., Lanz, K., Holterhus, P. M. & Hiort, O. Epidemiology and initial management of ambiguous genitalia at birth in Germany. Horm. Res. 66, 195–203 (2006).

    CAS  PubMed  Google Scholar 

  85. Abdullah, M. A. et al. Ambiguous genitalia: medical, socio-cultural and religious factors affecting management in Saudi Arabia. Ann. Trop. Paediatr. 11, 343–348 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Aydin, B. K. et al. Frequency of ambiguous genitalia in 14,177 newborns in Turkey. J. Endocr. Soc. 3, 1185–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mazen, I., Hiort, O., Bassiouny, R. & El Gammal, M. Differential diagnosis of disorders of sex development in Egypt. Horm. Res. 70, 118–123 (2008).

    CAS  PubMed  Google Scholar 

  88. Nassau, D. E. et al. Androgenization in Klinefelter syndrome: clinical spectrum from infancy through young adulthood. J. Pediatr. Urol. 17, 346–352 (2021).

    Article  PubMed  Google Scholar 

  89. Syryn, H., Van De Vijver, K. & Cools, M. Ovotesticular difference of sex development: genetic background, histological features, and clinical management. Horm. Res. Paediatr. https://doi.org/10.1159/000519323 (2021).

    Article  PubMed  Google Scholar 

  90. Berglund, A., Stochholm, K. & Gravholt, C. H. The epidemiology of sex chromosome abnormalities. Am. J. Med. Genet. C. Semin. Med. Genet. 184, 202–215 (2020).

    Article  PubMed  Google Scholar 

  91. Gravholt, C. H., Viuff, M. H., Brun, S., Stochholm, K. & Andersen, N. H. Turner syndrome: mechanisms and management. Nat. Rev. Endocrinol. 15, 601–614 (2019).

    Article  PubMed  Google Scholar 

  92. Huang, A. C., Olson, S. B. & Maslen, C. L. A review of recent developments in turner syndrome research. J. Cardiovasc. Dev. Dis. https://doi.org/10.3390/jcdd8110138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zitzmann, M. & Rohayem, J. Gonadal dysfunction and beyond: clinical challenges in children, adolescents, and adults with 47,XXY Klinefelter syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 184, 302–312 (2020).

    Article  PubMed  Google Scholar 

  94. Cools, M. et al. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat. Rev. Endocrinol. 14, 415–429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Akcan, N. et al. Mutations in AR or SRD5A2 Genes: clinical findings, endocrine pitfalls, and genetic features of children with 46,XY DSD. J. Clin. Res. Pediatr. Endocrinol. https://doi.org/10.4274/jcrpe.galenos.2021.2021-9-19 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Berglund, A. et al. Incidence, prevalence, diagnostic delay, and clinical presentation of female 46,XY disorders of sex development. J. Clin. Endocrinol. Metab. 101, 4532–4540 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Peng, Y. et al. Identification of potential genes in pathogenesis and diagnostic value analysis of partial androgen insensitivity syndrome using bioinformatics analysis. Front. Endocrinol. 12, 731107 (2021).

    Article  Google Scholar 

  98. Ulloa-Aguirre, A. et al. Incomplete regression of mullerian ducts in the androgen insensitivity syndrome. Fertil. Steril. 53, 1024–1028 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Van, Y. H. et al. Novel point mutations in complete androgen insensitivity syndrome with incomplete mullerian regression: two Taiwanese patients. Eur. J. Pediatr. 162, 781–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Damiani, D. et al. Persistence of Mullerian remnants in complete androgen insensitivity syndrome. J. Pediatr. Endocrinol. Metab. 15, 1553–1556 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Nichols, J. L., Bieber, E. J. & Gell, J. S. Case of sisters with complete androgen insensitivity syndrome and discordant Mullerian remnants. Fertil. Steril. 91, 932 e915–932 e938 (2009).

    Article  Google Scholar 

  102. Audi, L. et al. Novel (60%) and recurrent (40%) androgen receptor gene mutations in a series of 59 patients with a 46,XY disorder of sex development. J. Clin. Endocrinol. Metab. 95, 1876–1888 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Philibert, P. et al. Complete androgen insensitivity syndrome is frequently due to premature stop codons in exon 1 of the androgen receptor gene: an international collaborative report of 13 new mutations. Fertil. Steril. 94, 472–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Guven, A., Dursun, F., Ozkanli, S., Gucluer, B. & Kuru, L. I. Complete androgen insensitivity syndrome and discordant Mullerian remnants: two cases with novel mutation in the androgen receptor. J. Pediatr. Endocrinol. Metab. 26, 909–914 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Dodge, S. T., Finkelston, M. S. & Miyazawa, K. Testicular feminization with incomplete Mullerian regression. Fertil. Steril. 43, 937–938 (1985).

    Article  CAS  PubMed  Google Scholar 

  106. Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Kumar, A. et al. Clinical, biochemical, and molecular characterization of Indian children with clinically suspected androgen insensitivity syndrome. Sex. Dev. 16, 34–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 1419–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Pizzo, A., Lagana, A. S., Borrielli, I. & Dugo, N. Complete androgen insensitivity syndrome: a rare case of disorder of sex development. Case Rep. Obstet. Gynecol. 2013, 232696 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Wang, K. N., Chen, Q. Q., Zhu, Y. L. & Wang, C. L. Complete androgen insensitivity syndrome caused by the c.2678C>T mutation in the androgen receptor gene: a case report. World J. Clin. Cases 9, 11036–11042 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Han, B. et al. Differences of adrenal-derived androgens in 5α-reductase deficiency versus androgen insensitivity syndrome. Clin. Transl. Sci. 15, 658–666 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Ilaslan, E. et al. The FKBP4 gene, encoding a regulator of the androgen receptor signaling pathway, is a novel candidate gene for androgen insensitivity syndrome. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218403 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hornig, N. C. et al. Identification of an AR mutation-negative class of androgen insensitivity by determining endogenous AR activity. J. Clin. Endocrinol. Metab. 101, 4468–4477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hornig, N. C. & Holterhus, P. M. Molecular basis of androgen insensitivity syndromes. Mol. Cell. Endocrinol. 523, 111146 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Cools, M. & Looijenga, L. Update on the pathophysiology and risk factors for the development of malignant testicular germ cell tumors in complete androgen insensitivity syndrome. Sex. Dev. 11, 175–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Barros, B. A. et al. Complete androgen insensitivity syndrome and risk of gonadal malignancy: systematic review. Ann. Pediatr. Endocrinol. Metab. 26, 19–23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cools, M., Drop, S. L., Wolffenbuttel, K. P., Oosterhuis, J. W. & Looijenga, L. H. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr. Rev. 27, 468–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Dohnert, U., Wunsch, L. & Hiort, O. Gonadectomy in complete androgen insensitivity syndrome: why and when? Sex. Dev. 11, 171–174 (2017).

    Article  PubMed  Google Scholar 

  119. Michala, L., Goswami, D., Creighton, S. M. & Conway, G. S. Swyer syndrome: presentation and outcomes. BJOG 115, 737–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Gabriel Ribeiro de Andrade, J. et al. Long-term follow-up of patients with 46,XY partial gonadal dysgenesis reared as males. Int. J. Endocrinol. 2014, 480724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ocal, G. et al. The clinical and genetic heterogeneity of mixed gonadal dysgenesis: does “disorders of sexual development (DSD)” classification based on new Chicago consensus cover all sex chromosome DSD? Eur. J. Pediatr. 171, 1497–1502 (2012).

    Article  PubMed  Google Scholar 

  122. Das, D. V. & Jabbar, P. K. Clinical and reproductive characteristics of patients with mixed gonadal dysgenesis (45,X/46, XY). J. Obstet. Gynaecol. India 71, 399–405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fine, S. et al. Mixed gonadal dysgenesis with an ovotestis on imaging mimicking ovotesticular disorder of sexual differentiation. Proc 34, 739–741 (2021).

    Google Scholar 

  124. Weidler, E. M., Pearson, M., van Leeuwen, K. & Garvey, E. Clinical management in mixed gonadal dysgenesis with chromosomal mosaicism: considerations in newborns and adolescents. Semin. Pediatr. Surg. 28, 150841 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ljubicic, M. L. et al. Clinical but not histological outcomes in males with 45,X/46,XY mosaicism vary depending on reason for diagnosis. J. Clin. Endocrinol. Metab. 104, 4366–4381 (2019).

    Article  PubMed  Google Scholar 

  126. Vasundhera, C., Jyotsna, V. P., Kandasamy, D. & Gupta, N. Clinical, hormonal and radiological profile of 46XY disorders of sexual development. Indian. J. Endocrinol. Metab. 20, 300–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Elzaiat, M., McElreavey, K. & Bashamboo, A. Genetics of 46,XY gonadal dysgenesis. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101633 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Altunoglu, U. et al. Expanding the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to XX gonadal dysgenesis. Clin. Genet. 101, 221–232 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Mazen, I. et al. A homozygous missense variant in hedgehog acyltransferase (HHAT) gene associated with 46,XY gonadal dysgenesis. Sex. Dev. https://doi.org/10.1159/000520366 (2022).

    Article  PubMed  Google Scholar 

  130. White, S. et al. A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. Eur. J. Hum. Genet. 20, 348–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Baetens, D. et al. Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development. Genet. Med. 20, 717–727 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Fabbri-Scallet, H. et al. Can non-coding NR5A1 gene variants explain phenotypes of disorders of sex development? Sex. Dev. https://doi.org/10.1159/000524956 (2022).

    Article  PubMed  Google Scholar 

  133. Sreenivasan, R. et al. Mutant NR5A1/SF-1 in patients with disorders of sex development shows defective activation of the SOX9 TESCO enhancer. Hum. Mutat. 39, 1861–1874 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. McElreavey, K., Pailhoux, E. & Bashamboo, A. DHX37 and 46,XY DSD: a new ribosomopathy? Sex. Dev. 16, 194–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. da Silva, T. E. et al. Genetic evidence of the association of DEAH-box helicase 37 defects with 46,XY gonadal dysgenesis spectrum. J. Clin. Endocrinol. Metab. 104, 5923–5934 (2019).

    Article  PubMed  Google Scholar 

  136. Bagheri-Fam, S. et al. Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Hum. Mol. Genet. 20, 2213–2224 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Harley, V. R. & Goodfellow, P. N. The biochemical role of SRY in sex determination. Mol. Reprod. Dev. 39, 184–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Zhao, L. & Koopman, P. SRY protein function in sex determination: thinking outside the box. Chromosome Res. 20, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Phillips, N. B. et al. SRY and human sex determination: the basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. J. Mol. Biol. 358, 172–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Chamberlin, A. et al. Mutations in MAP3K1 that cause 46,XY disorders of sex development disrupt distinct structural domains in the protein. Hum. Mol. Genet. 28, 1620–1628 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Warr, N. et al. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev. Cell 23, 1020–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cools, M. et al. Gonadal pathology and tumor risk in relation to clinical characteristics in patients with 45,X/46,XY mosaicism. J. Clin. Endocrinol. Metab. 96, E1171–E1180 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Lu, L., Luo, F. & Wang, X. Gonadal tumor risk in pediatric and adolescent phenotypic females with disorders of sex development and Y chromosomal constitution with different genetic etiologies. Front. Pediatr. 10, 856128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Huang, H., Wang, C. & Tian, Q. Gonadal tumour risk in 292 phenotypic female patients with disorders of sex development containing Y chromosome or Y-derived sequence. Clin. Endocrinol. 86, 621–627 (2017).

    Article  CAS  Google Scholar 

  145. Batista, R. L. & Mendonca, B. B. Integrative and analytical review of the 5-alpha-reductase type 2 deficiency worldwide. Appl. Clin. Genet. 13, 83–96 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Akcay, T. et al. AR and SRD5A2 gene mutations in a series of 51 Turkish 46,XY DSD children with a clinical diagnosis of androgen insensitivity. Andrology 2, 572–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Boudon, C. et al. A new deletion of the 5α-reductase type 2 gene in a Turkish family with 5 α-reductase deficiency. Clin. Endocrinol. 43, 183–188 (1995).

    Article  CAS  Google Scholar 

  148. Ocal, G. et al. Mutations of the 5α-steroid reductase type 2 gene in six Turkish patients from unrelated families and a large pedigree of an isolated Turkish village. J. Pediatr. Endocrinol. Metab. 15, 411–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Nie, M., Zhou, Q., Mao, J., Lu, S. & Wu, X. Five novel mutations of SRD5A2 found in eight Chinese patients with 46,XY disorders of sex development. Mol. Hum. Reprod. 17, 57–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Zhu, H. et al. Phenotypic and molecular characteristics in eleven Chinese patients with 5α-reductase type 2 deficiency. Clin. Endocrinol. 81, 711–720 (2014).

    Article  CAS  Google Scholar 

  151. Bertelloni, S. et al. 5α-reductase-2 deficiency: clinical findings, endocrine pitfalls, and genetic features in a large Italian cohort. Sex. Dev. 10, 28–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Imperato-McGinley, J., Guerrero, L., Gautier, T. & Peterson, R. E. Steroid 5α-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 186, 1213–1215 (1974).

    Article  CAS  PubMed  Google Scholar 

  153. Ko, J. M. et al. Clinical characterization and analysis of the SRD5A2 gene in six Korean patients with 5α-reductase type 2 deficiency. Horm. Res. Paediatr. 73, 41–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Mendonca, B. B. et al. Male pseudohermaphroditism due to steroid 5α-reductase 2 deficiency. Diagnosis, psychological evaluation, and management. Medicine 75, 64–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Sahakitrungruang, T. et al. Identification of mutations in the SRD5A2 gene in Thai patients with male pseudohermaphroditism. Fertil. Steril. 90, 2015.e11–2015.e15 (2008).

    Article  PubMed  Google Scholar 

  156. Canto, P. et al. Mutations of the 5α-reductase type 2 gene in eight Mexican patients from six different pedigrees with 5α-reductase-2 deficiency. Clin. Endocrinol. 46, 155–160 (1997).

    Article  CAS  Google Scholar 

  157. Maria Guadalupe, O. L., Katy, S. P., Charmina, A. A., Vihko, P. & Marta, M. Molecular characterization of two known SRD5A2 gene variants in Mexican patients with disorder of sexual development. Front. Genet. 12, 794476 (2021).

    Article  PubMed  Google Scholar 

  158. Vilchis, F. et al. Molecular analysis of the SRD5A2 in 46,XY subjects with incomplete virilization: the P212R substitution of the steroid 5α-reductase 2 may constitute an ancestral founder mutation in Mexican patients. J. Androl. 31, 358–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Andonova, S. et al. New territory for an old disease: 5-α-reductase type 2 deficiency in Bulgaria. Sex. Dev. 11, 21–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Avendano, A. et al. 5α-Reductase type 2 deficiency in families from an isolated Andean population in Venezuela. Ann. Hum. Genet. 84, 151–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Cheon, C. K. Practical approach to steroid 5α-reductase type 2 deficiency. Eur. J. Pediatr. 170, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Imperato-McGinley, J. & Zhu, Y. S. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol. Cell Endocrinol. 198, 51–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Wilson, J. D., Griffin, J. E. & Russell, D. W. Steroid 5 α-reductase 2 deficiency. Endocr. Rev. 14, 577–593 (1993).

    CAS  PubMed  Google Scholar 

  164. Maimoun, L. et al. Phenotypical, biological, and molecular heterogeneity of 5α-reductase deficiency: an extensive international experience of 55 patients. J. Clin. Endocrinol. Metab. 96, 296–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Pang, S. et al. Dihydrotestosterone and its relationship to testosterone in infancy and childhood. J. Clin. Endocrinol. Metab. 48, 821–826 (1979).

    Article  CAS  PubMed  Google Scholar 

  166. Costa, E. M., Domenice, S., Sircili, M. H., Inacio, M. & Mendonca, B. B. DSD due to 5α-reductase 2 deficiency — from diagnosis to long term outcome. Semin. Reprod. Med. 30, 427–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Walsh, P. C. et al. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N. Engl. J. Med. 291, 944–949 (1974).

    Article  CAS  PubMed  Google Scholar 

  168. Mendonca, B. B. et al. Male pseudohermaphroditism due to 5 α reductase deficiency associated with gynecomastia. Rev. Hosp. Clin. Fac. Med. Sao Paulo 42, 66–68 (1987).

    CAS  PubMed  Google Scholar 

  169. Kanakis, G. A. et al. EAA clinical practice guidelines — gynecomastia evaluation and management. Andrology 7, 778–793 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Imperato-McGinley, J., Peterson, R. E., Gautier, T. & Sturla, E. Androgens and the evolution of male-gender identity among male pseudohermaphrodites with 5α-reductase deficiency. N. Engl. J. Med. 300, 1233–1237 (1979).

    Article  CAS  PubMed  Google Scholar 

  171. Bertelloni, S., Russo, G. & Baroncelli, G. I. Human chorionic gonadotropin test: old uncertainties, new perspectives, and value in 46,XY disorders of sex development. Sex. Dev. 12, 41–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Fernandez-Cancio, M. et al. SRD5A2 gene mutations and polymorphisms in Spanish 46,XY patients with a disorder of sex differentiation. Int. J. Androl. 34, e526–e535 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Mendonca, B. B. Gender assignment in patients with disorder of sex development. Curr. Opin. Endocrinol. Diabetes Obes. 21, 511–514 (2014).

    Article  PubMed  Google Scholar 

  174. Samtani, R., Bajpai, M., Ghosh, P. K. & Saraswathy, K. N. SRD5A2 gene mutations — a population-based review. Pediatr. Endocrinol. Rev. 8, 34–40 (2010).

    PubMed  Google Scholar 

  175. Vija, L. et al. Testicular histological and immunohistochemical aspects in a post-pubertal patient with 5α-reductase type 2 deficiency: case report and review of the literature in a perspective of evaluation of potential fertility of these patients. BMC Endocr. Disord. 14, 43 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Claahsen-van der Grinten, H. L. et al. Congenital adrenal hyperplasia — current insights in pathophysiology, diagnostics, and management. Endocr. Rev. 43, 91–159 (2022).

    Article  PubMed  Google Scholar 

  177. Terribile, M. et al. 46,XX Testicular disorder of sex development (DSD): a case report and systematic review. Medicina 55, 371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Auchus, R. J. The uncommon forms of congenital adrenal hyperplasia. Curr. Opin. Endocrinol. Diabetes Obes. 29, 263–270 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Khalid, J. M. et al. Incidence and clinical features of congenital adrenal hyperplasia in Great Britain. Arch. Dis. Child. 97, 101–106 (2012).

    Article  PubMed  Google Scholar 

  180. Gidlöf, S., Wedell, A., Guthenberg, C., von Döbeln, U. & Nordenström, A. Nationwide neonatal screening for congenital adrenal hyperplasia in Sweden: a 26-year longitudinal prospective population-based study. JAMA Pediatr. 168, 567–574 (2014).

    Article  PubMed  Google Scholar 

  181. Li, Z. et al. Analysis of the screening results for congenital adrenal hyperplasia involving 7.85 million newborns in China: a systematic review and meta-analysis. Front. Endocrinol. 12, 624507 (2021).

    Article  Google Scholar 

  182. El-Maouche, D., Arlt, W. & Merke, D. P. Congenital adrenal hyperplasia. Lancet 390, 2194–2210 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Gidlof, S. et al. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1, 35–42 (2013).

    Article  PubMed  Google Scholar 

  184. Merke, D. P. & Auchus, R. J. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 383, 1248–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Neeman, B., Bello, R., Lazar, L., Phillip, M. & de Vries, L. Central precocious puberty as a presenting sign of nonclassical congenital adrenal hyperplasia: clinical characteristics. J. Clin. Endocrinol. Metab. 104, 2695–2700 (2019).

    Article  PubMed  Google Scholar 

  186. Eugster, E. A. et al. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J. Pediatr. 138, 26–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. New, M. I. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91, 4205–4214 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Al Wattar, B. H. et al. Clinical practice guidelines on the diagnosis and management of polycystic ovary syndrome: a systematic review and quality assessment study. J. Clin. Endocrinol. Metab. 106, 2436–2446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Azziz, R. et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 91, 4237–4245 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Papadakis, G., Kandaraki, E. A., Tseniklidi, E., Papalou, O. & Diamanti-Kandarakis, E. Polycystic ovary syndrome and NC-CAH: distinct characteristics and common findings. A systematic review. Front. Endocrinol. 10, 388 (2019).

    Article  Google Scholar 

  191. Mallappa, A. & Merke, D. P. Management challenges and therapeutic advances in congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 18, 337–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Merke, D. P. et al. Modified-release hydrocortisone in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e2063–e2077 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).

    Article  CAS  Google Scholar 

  194. Ruiz-Babot, G. et al. Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells. Cell Rep. 22, 1236–1249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Markmann, S. et al. Biology of the adrenal gland cortex obviates effective use of adeno-associated virus vectors to treat hereditary adrenal disorders. Hum. Gene Ther. 29, 403–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04783181 (2023).

  197. Bharucha, K. et al. ODP046 Initial lessons from a prescreening protocol to identify participants with classic CAH potentially eligible for gene therapy treatment with BBP-631, an adeno-associated virus (AAV) serotype 5-Based Recombinant Vector Encoding the Human CYP21A2 Gene. J. Endocr. Soc. 6, A60–A61 (2022).

    Article  PubMed Central  Google Scholar 

  198. Yildiz, M. et al. Ovarian and paraovarian adrenal rest tumors are not uncommon in gonadectomy materials of historical congenital adrenal hyperplasia cases in childhood. Eur. J. Endocrinol. 187, K13–K18 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Nermoen, I. & Falhammar, H. Prevalence and characteristics of adrenal tumors and myelolipomas in congenital adrenal hyperplasia: a systematic review and meta-analysis. Endocr. Pract. 26, 1351–1365 (2020).

    Article  PubMed  Google Scholar 

  200. Kim, M. S. et al. Testicular adrenal rest tumors in boys and young adults with congenital adrenal hyperplasia. J. Urol. 197, 931–936 (2017).

    Article  PubMed  Google Scholar 

  201. Maciel-Guerra, A. T. et al. XX Maleness and XX true hermaphroditism in SRY-negative monozygotic twins: additional evidence for a common origin. J. Clin. Endocrinol. Metab. 93, 339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Naasse, Y. et al. A novel homozygous missense mutation in the FU-CRD2 domain of the R-spondin1 gene associated with familial 46,XX DSD. Sex. Dev. 11, 269–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Grinspon, R. P. & Rey, R. A. Disorders of sex development with testicular differentiation in SRY-negative 46,XX individuals: clinical and genetic aspects. Sex. Dev. 10, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Berglund, A. et al. Incidence, prevalence, diagnostic delay, morbidity, mortality and socioeconomic status in males with 46,XX disorders of sex development: a nationwide study. Hum. Reprod. 32, 1751–1760 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Eozenou, C. et al. Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene. Proc. Natl Acad. Sci. USA 117, 13680–13688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wei, J. et al. Duplication of SOX3 in an SRY-negative 46,XX male with prostatic utricle: case report and literature review. BMC Med. Genomics 15, 188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gomes, N. L. et al. A 46,XX testicular disorder of sex development caused by a Wilms’ tumour Factor-1 (WT1) pathogenic variant. Clin. Genet. 95, 172–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Tallapaka, K., Venugopal, V., Dalal, A. & Aggarwal, S. Novel RSPO1 mutation causing 46,XX testicular disorder of sex development with palmoplantar keratoderma: a review of literature and expansion of clinical phenotype. Am. J. Med. Genet. A 176, 1006–1010 (2018).

    Article  PubMed  Google Scholar 

  209. Parma, P. et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet. 38, 1304–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Baetens, D. et al. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genet. Med. 19, 367–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Bashamboo, A. et al. A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development. Hum. Mol. Genet. 25, 3446–3453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Knarston, I. M. et al. NR5A1 gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients. Hum. Mutat. 40, 207–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Bashamboo, A. et al. Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46,XX children. Am. J. Hum. Genet. 102, 487–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Carvalheira, G. et al. The natural history of a man with ovotesticular 46,XX DSD caused by a novel 3-Mb 15q26.2 deletion containing NR2F2 gene. J. Endocr. Soc. 3, 2107–2113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Sutton, E. et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Invest. 121, 328–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Vetro, A. et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur. J. Hum. Genet. 23, 1025–1032 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Cox, J. J., Willatt, L., Homfray, T. & Woods, C. G. A SOX9 duplication and familial 46,XX developmental testicular disorder. N. Engl. J. Med. 364, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Qian, Z. et al. Whole genome sequencing identifies a cryptic SOX9 regulatory element duplication underlying a case of 46,XX ovotesticular difference of sexual development. Am. J. Med. Genet. A 185, 2782–2788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Falah, N. et al. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Am. J. Med. Genet. A 173, 1066–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Seeherunvong, T. et al. 46,XX sex reversal with partial duplication of chromosome arm 22q. Am. J. Med. Genet. A 127a, 149–151 (2004).

    Article  PubMed  Google Scholar 

  222. Croft, B. et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat. Commun. 9, 5319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gonen, N. et al. Sex reversal following deletion of a single distal enhancer of Sox9. Science 360, 1469–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kobayashi, M. et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 17, 507–521 (2022).

    Article  CAS  Google Scholar 

  225. Ge, W. et al. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell. Mol. Life Sci. 78, 695–713 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Sproll, P. et al. Assembling the jigsaw puzzle: CBX2 isoform 2 and its targets in disorders/differences of sex development. Mol. Genet. Genom. Med. 6, 785–795 (2018).

    Article  CAS  Google Scholar 

  227. Croft, B. et al. FGF9 variant in 46,XY DSD patient suggests a role for dimerization in sex determination. Clin. Genet. https://doi.org/10.1111/cge.14261 (2022).

    Article  PubMed  Google Scholar 

  228. Bagheri-Fam, S. et al. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum. Mol. Genet. 24, 6699–6710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Health and Medical Research Council (NHMRC, Australia) Program Grant 1074258 and the NHMRC Research Fellowship 441102, both awarded to V.R.H. This work was supported by a clinical fellowship awarded to A.P.R. from the Board of the Hospital Infantil de México Federico Gómez. The Hudson Institute is supported by the Operational Infrastructure Scheme of the State Government of Victoria, Australia.

Author information

Authors and Affiliations

Authors

Contributions

All authors searched the literature, wrote the manuscript, prepared the tables and developed the figures. All authors made substantial contributions to discussion of content, and reviewed and edited the article before submission.

Corresponding author

Correspondence to Vincent R. Harley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Urology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Gene Mutation Database: https://www.hgmd.cf.ac.uk/ac/index.php

Online Mendelian Inheritance in Man: https://www.omim.org

PubMed: https://pubmed.ncbi.nlm.nih.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, A.P., León, N.Y., Frost, E.R. et al. Genetic control of typical and atypical sex development. Nat Rev Urol 20, 434–451 (2023). https://doi.org/10.1038/s41585-023-00754-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00754-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing