Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disorders of sex development: new genes, new concepts

Abstract

Formerly known as 'intersex' conditions, disorders of sex development (DSDs) are congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. A complete revision of the nomenclature and classification of DSDs has been undertaken, which emphasizes the genetic aetiology of these disorders and discards pejorative terms. Uptake of the new terminology is widespread. DSDs affecting gonadal development are perhaps the least well understood. Unravelling the molecular mechanisms underlying gonadal development has revealed new causes of DSDs, although a specific molecular diagnosis is made in only 20% of patients. Conversely, identification of the molecular causes of DSDs has provided insight into the mechanisms of gonadal development. Studies of N-ethyl-N-nitrosourea mutagenesis in the mouse, and multigene diagnostic screening and genome-wide approaches, such as array-comparative genomic hybridization and next-generation sequencing, in patients with DSDs are accelerating the discovery of genes involved in gonadal development and DSDs. Furthermore, long-range gene regulatory mutations and multiple gene mutations are emerging as new causes of DSDs. Patients with DSDs, their parents and medical staff are confronted with challenging decisions regarding gender assignment, genital surgery and lifelong care. These advances are refining prognostic prediction and systematically improving the diagnosis and long-term management of children with DSDs.

Key Points

  • The development of a testis or an ovary from common gonadal primordia is governed by complex molecular networks of gene expression

  • The products of male-specific and female-specific genes promote testis and ovary development, and antagonize each other; disturbance of this fine balance can lead to disorders of sex development (DSDs)

  • A specific molecular diagnosis is currently made in only 20% of patients with DSDs; however, advanced genetic technologies could identify new causes of DSDs and their molecular basis

  • DSD diagnosis and management are complex; an experienced multi-disciplinary team is required to work with the patient and their family, placing the patient's quality of life at the forefront

  • New terminology for and classification of DSDs, built around genetic concepts and systematic approaches to lifelong care, have been embraced by health professionals, families and the academic literature

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene regulatory networks in embryonic gonadal development.

Similar content being viewed by others

References

  1. Hughes, I. A. et al. Consensus statement on management of intersex disorders. Arch. Dis. Child. 91, 554–563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vilain, E. et al. We used to call them hermaphrodites. Genet. Med. 9, 65–66 (2007).

    Article  PubMed  Google Scholar 

  3. Pasterski, V., Prentice, P. & Hughes, I. A. Impact of the consensus statement and the new DSD classification system. Best Pract. Res. Clin. Endocrinol. Metab. 24, 187–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Biason-Lauber, A. Control of sex development. Best Pract. Res. Clin. Endocrinol. Metab. 24, 163–186 (2010).

    Article  PubMed  Google Scholar 

  5. Achermann, J. C. & Hughes, I. A. in Williams Textbook of Endocrinology 12th edn Ch. 23 (eds Melmed, S. et al.) 869–934 (Saunders, Philadelphia, 2011).

    Google Scholar 

  6. Barbaro, M., Wedell, A. & Nordenström, A. Disorders of sex development. Semin. Fetal Neonatal Med. 16, 119–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Rey, R. A. & Grinspon, R. P. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract. Res. Clin. Endocrinol. Metab. 25, 221–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Eggers, S. & Sinclair, A. Mammalian sex determination—insights from humans and mice. Chromosome Res. 20, 215–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, Y. & Capel, B. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev. Dyn. 235, 2292–2300 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Sekido, R. & Lovell-Badge, R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 25, 19–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelm, D., Palmer, S. & Koopman, P. Sex determination and gonadal development in mammals. Physiol. Rev. 87, 1–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  PubMed  Google Scholar 

  13. Knower, K. C. et al. Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS One 6, e17751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knower, K. C. et al. Characterisation of urogenital ridge gene expression in the human embryonal carcinoma cell line NT2/D1. Sex. Dev. 1, 114–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Koopman, P., Münsterberg, A., Capel, B., Vivian, N. & Lovell-Badge, R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Hacker, A., Capel, B., Goodfellow, P. & Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121, 1603–1614 (1995).

    CAS  PubMed  Google Scholar 

  17. Bullejos, M. & Koopman, P. Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm, D. et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev. Biol. 287, 111–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hanley, N. A. et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech. Dev. 91, 403–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Hossain, A. & Saunders, G. F. The human sex-determining gene SRY is a direct target of WT1. J. Biol. Chem. 276, 16817–16823 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. de Santa Barbara, P. et al. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol. Reprod. 64, 775–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Tevosian, S. G. et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627–4634 (2002).

    CAS  PubMed  Google Scholar 

  24. Katoh-Fukui, Y. et al. Male-to-female sex reversal in M33 mutant mice. Nature 393, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Katoh-Fukui, Y. et al. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153, 913–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Warr, N. et al. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev. Cell 23, 1020–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gierl, M. S., Gruhn, W. H., von Seggern, A., Maltry, N. & Niehrs, C. GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev. Cell 23, 1032–1042 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    CAS  PubMed  Google Scholar 

  29. Nef, S. et al. Testis determination requires insulin receptor family function in mice. Nature 426, 291–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Birk, O. S. et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Morais da Silva, S. et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 62–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Sekido, R. & Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Barrionuevo, F. et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol. Reprod. 74, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Moniot, B. et al. The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development 136, 1813–1821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jameson, S. A., Lin, Y. T. & Capel, B. Testis development requires the repression of Wnt4 by Fgf signaling. Dev. Biol. 370, 24–32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, C. D. et al. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 5, e10113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chassot, A. A. et al. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tomaselli, S. et al. Human RSPO1/R-spondin1 is expressed during early ovary development and augments β-catenin signaling. PloS ONE 6, e16366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomizuka, K. et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum. Mol. Genet. 17, 1278–1291 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Yao, H. H. et al. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev. Dyn. 230, 210–215 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kashimada, K. et al. FOXL2 and BMP2 act cooperatively to regulate follistatin gene expression during ovarian development. Endocrinology 152, 272–280 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Blount, A. L. et al. FoxL2 and Smad3 coordinately regulate follistatin gene transcription. J. Biol. Chem. 284, 7631–7645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, Y. et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol. 4, e187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ottolenghi, C. et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum. Mol. Genet. 16, 2795–2804 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, C. F., Bingham, N., Parker, K. & Yao, H. H. Sex-specific roles of β-catenin in mouse gonadal development. Hum. Mol. Genet. 18, 405–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Maatouk, D. M. et al. Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Hum. Mol. Genet. 17, 2949–2955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bernard, P. et al. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology 153, 901–912 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Lavery, R. et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev. Biol. 354, 111–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Matson, C. K. et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohira, R. et al. Human ARX gene: genomic characterization and expression. Mol. Genet. Metab. 77, 179–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ion, A. et al. A novel mutation in the putative DNA helicase XH2 is responsible for male-to-female sex reversal associated with an atypical form of the ATR-X syndrome. Am. J. Hum. Genet. 58, 1185–1191 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bagheri-Fam, S. et al. Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Hum. Mol. Genet. 20, 2213–2224 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Biason-Lauber, A., Konrad, D., Meyer, M., DeBeaufort, C. & Schoenle, E. J. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clark, A. M., Garland, K. K. & Russell, L. D. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol. Reprod. 63, 1825–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Parmantier, E. et al. Schwann cell-derived desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23, 713–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Canto, P., Soderlund, D., Reyes, E. & Mendez, J. P. Mutations in the desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J. Clin. Endocrinol. Metab. 89, 4480–4483 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Umehara, F. et al. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am. J. Hum. Genet. 67, 1302–1305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Canto, P., Vilchis, F., Söderlund, D., Reyes, E. & Méndez, J. P. A heterozygous mutation in the desert hedgehog gene in patients with mixed gonadal dysgenesis. Mol. Hum. Reprod. 11, 833–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Muroya, K. et al. Sex-determining gene(s) on distal 9p: clinical and molecular studies in six cases. J. Clin. Endocrinol. Metab. 85, 3094–3100 (2000).

    CAS  PubMed  Google Scholar 

  63. Ottolenghi, C. et al. The region on 9p associated with 46,XY sex reversal contains several transcripts expressed in the urogenital system and a novel doublesex-related domain. Genomics 64, 170–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Barbaro, M. et al. Characterization of deletions at 9p affecting the candidate regions for sex reversal and deletion 9p syndrome by MLPA. Eur. J. Hum. Genet. 17, 1439–1447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ledig, S., Hiort, O., Wünsch, L. & Wieacker, P. Partial deletion of DMRT1 causes 46,XY ovotesticular disorder of sexual development. Eur. J. Endocrinol. 167, 119–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Raymond, C. S., Murphy, M. W., O'Sullivan, M. G., Bardwell, V. J. & Zarkower, D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 14, 2587–2595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Lourenço, D. et al. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc. Natl Acad. Sci. USA 108, 1597–1602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Molkentin, J. D., Lin, Q., Duncan, S. A. & Olson, E. N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Fukami, M. et al. CXorf6 is a causative gene for hypospadias. Nat. Genet. 38, 1369–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Fukami, M. et al. Mastermind-like domain-containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 promoter, augments testosterone production, and contains the SF1 target sequence. J. Biol. Chem. 283, 5525–5532 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura, M. et al. Mamld1 knockdown reduces testosterone production and Cyp17a1 expression in mouse Leydig tumor cells. PLoS ONE 6, e19123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miyado, M. et al. Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. Endocrinology 153, 6033–6040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pearlman, A. et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am. J. Hum. Genet. 87, 898–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warr, N. et al. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1. PLoS ONE 6, e19572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bogani, D. et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol. 7, e1000196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zanaria, E. et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Swain, A., Narvaez, V., Burgoyne, P., Camerino, G. & Lovell-Badge, R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Meeks, J. J., Weiss, J. & Jameson, J. L. Dax1 is required for testis determination. Nat. Genet. 34, 32–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Ludbrook, L. M. & Harley, V. R. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol. Metab. 15, 116–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ludbrook, L. M. et al. Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology 153, 1948–1958 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Shen, W. H., Moore, C. C., Ikeda, Y., Parker, K. L. & Ingraham, H. A. Nuclear receptor steroidogenic factor 1 regulates the Müllerian inhibiting substance gene: A link to the sex determination cascade. Cell 77, 651–661 (1994).

    Article  PubMed  Google Scholar 

  86. Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Bland, M. L. et al. Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc. Natl Acad. Sci. USA 97, 14488–14493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Achermann, J. C. et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 87, 1829–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Allali, S. et al. Mutation analysis of NR5A1 encoding steroidogenic factor 1 in 77 patients with 46, XY disorders of sex development (DSD) including hypospadias. PLoS ONE 6, e24117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferraz-de-Souza, B., Lin, L. & Achermann, J. C. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol. Cell. Endocrinol. 336, 198–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Foster, J. W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Mansour, S., Hall, C. M., Pembrey, M. E. & Young, I. D. A clinical and genetic study of campomelic dysplasia. J. Med. Genet. 32, 415–420 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Akiyama, H. et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc. Natl Acad. Sci. USA 101, 6502–6507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chaboissier, M.C. et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891–1901 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Benko, S. et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J. Med. Genet. 48, 825–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Cox, J. J., Willatt, L., Homfray, T. & Woods, C. G. A SOX9 duplication and familial 46,XX developmental testicular disorder. N. Engl. J. Med. 364, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Vetro, A. et al. XX males SRY negative: a confirmed cause of infertility. J. Med. Genet. 48, 710–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Georg, I. et al. Mutations of the SRY-responsive enhancer of SOX9 are uncommon in XY gonadal dysgenesis. Sex Dev. 4, 321–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Harley, V. R. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr. Rev. 24, 466–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Berta, P. et al. Genetic evidence equating SRY and the testis-determining factor. Nature 348, 448–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Harley, V. R. et al. DNA binding activity of recombinant SRY from normal males and XY females. Science 255, 453–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Harley, V. R. et al. Defective importin β recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proc. Natl Acad. Sci. USA 100, 7045–7050 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sim, H. et al. Inhibition of SRY-calmodulin complex formation induces ectopic expression of ovarian cell markers in developing XY gonads. Endocrinology 152, 2883–2893 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Jordan, B. K. et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am. J. Hum. Genet. 68, 1102–1109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jordan, B. K., Shen, J. H., Olaso, R., Ingraham, H. A. & Vilain, E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/β-catenin synergy. Proc. Natl Acad. Sci. USA 100, 10866–10871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pritchard-Jones, K. et al. The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Haber, D. A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms' tumour. Nature 353, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys–Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. White, S. et al. A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. Eur. J. Hum. Genet. 20, 348–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Aqeilan, R. I. et al. Targeted ablation of the WW domain-containing oxidoreductase tumor suppressor leads to impaired steroidogenesis. Endocrinology 150, 1530–1535 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ludes-Meyers, J. H. et al. WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer 46, 1129–1136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brandao, M. P. et al. MAMLD1 (mastermind-like domain containing 1) homozygous gain-of-function missense mutation causing 46,XX disorder of sex development in a virilized female. Adv. Exp. Med. Biol. 707, 129–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Jeyasuria, P. et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol. Endocrinol. 18, 1610–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Lourenco, D. et al. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 360, 1200–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fonseca, D. J. et al. CITED2 mutations potentially cause idiopathic premature ovarian failure. Transl. Res. 160, 384–388 (2012).

  122. Parma, P. et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet. 38, 1304–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Tomaselli, S. et al. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum. Mutat. 29, 220–226 (2008).

    Article  PubMed  Google Scholar 

  124. Houmard, B. et al. Global gene expression in the human fetal testis and ovary. Biol. Reprod. 81, 438–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sutton, E. et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Invest. 121, 328–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Foster, J. W. & Graves, J. A. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl Acad. Sci. USA 91, 1927–1931 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vidal, V. P., Chaboissier, M. C., de Rooij, D. G. & Schedl, A. Sox9 induces testis development in XX transgenic mice. Nat. Genet. 28, 216–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, B., Wang, S., Ning, Y., Lamb, A. N. & Bartley, J. Autosomal XX sex reversal caused by duplication of SOX9. Am. J. Med. Genet. 87, 349–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Vainio, S., Heikkilä, M., Kispert, A., Chin, N. & McMahon, A. P. Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Biason-Lauber, A., Konrad, D., Navratil, F. & Schoenle, E. J. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N. Engl. J. Med. 351, 792–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hersmus, R. et al. A 46,XY female DSD patient with bilateral gonadoblastoma, a novel SRY missense mutation combined with a WT1 KTS splice-site mutation. PLoS ONE 7, e40858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arboleda, V. A. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin. Genet. http://dx.doi.org/10.1111/j.1399-0004.2012.01879.x.

  135. Nef, S. et al. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev. Biol. 287, 361–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Beverdam, A. & Koopman, P. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum. Mol. Genet. 15, 417–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Wolf, S. M. et al. Managing incidental findings in human subjects research: analysis and recommendations. J. Law Med. Ethics 36, 219–248 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Biesecker, L. G. Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet. Med. 14, 393–398 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Russell, W. L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gondo, Y., Fukumura, R., Murata, T. & Makino, S. ENU-based gene-driven mutagenesis in the mouse: a next-generation gene-targeting system. Exp. Anim. 59, 537–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Weiss, J. et al. ENU mutagenesis in mice identifies candidate genes for hypogonadism. Mamm. Genome 23, 346–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bagheri-Fam, S. et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev. Biol. 314, 71–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Buganim, Y. et al. Direct reprogramming of fibroblasts into embryonic sertoli-like cells by defined factors. Cell Stem Cell 11, 373–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ahmed, S. F. et al. UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development. Clin. Endocrinol. (Oxf.) 75, 12–26 (2011).

    Article  Google Scholar 

  145. Crissman, H. P. et al. Children with disorders of sex development: a qualitative study of early parental experience. Int. J. Pediatr. Endocrinol. 2011, 10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cools, M., Wolffenbuttel, K. P., Drop, S. L., Oosterhuis, J. W. & Looijenga, L. H. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex. Dev. 5, 167–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Looijenga, L. H. et al. Gonadal tumours and DSD. Best Pract. Res. Clin. Endocrinol. Metab. 24, 291–310 (2010).

    Article  PubMed  Google Scholar 

  148. University of Glasgow. The I-DSD Network [online], (2012).

  149. Ahmed, S. F., Rodie, M., Jiang, J. & Sinnott, R. O. The European disorder of sex development registry: a virtual research environment. Sex. Dev. 4, 192–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. University of California San Francisco. Disorders of Sex Development—Translational Research Network [online], (2012).

  151. Murdock Childrens Research Institute. DSD Network Online Registry [online], (2012).

  152. Gillam, L. H., Hewitt, J. K. & Warne, G. L. Ethical principles for the management of infants with disorders of sex development. Horm. Res. Paediatr. 74, 412–418 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Vidal, I. et al. Surgical options in disorders of sex development (DSD) with ambiguous genitalia. Best Pract. Res. Clin. Endocrinol. Metab. 24, 311–324 (2010).

    Article  PubMed  Google Scholar 

  154. Wiesemann, C., Ude-Koeller, S., Sinnecker, G. H. & Thyen, U. Ethical principles and recommendations for the medical management of differences of sex development (DSD)/intersex in children and adolescents. Eur. J. Pediatr. 169, 671–679 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Bernard, S. Bagheri-Fam, R. Lavery, J. Ryan, D. Alankarage and R. Sreenivasan at Prince Henry's Institute, Melbourne, Australia for critical reading of this manuscript, and A. Greenfield of the Medical Research Council, Harwell, UK and E. Turbitt at Murdoch Children's Research Institute, Melbourne, Australia for fruitful discussions of its content. The authors' research work was supported by National Health and Medical Research Council Program Grant 546517 and Fellowship 1020034 to V. R. Harley and the State of Victoria Operational Infrastructure Support Program, Australia.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussing the content, writing the manuscript, and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Vincent R. Harley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information Table 1

Classification of DSDs (DOC 44 kb)

Supplementary information Table 2

Genes and proteins implicated in disorders of sex development (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, M., Harley, V. Disorders of sex development: new genes, new concepts. Nat Rev Endocrinol 9, 79–91 (2013). https://doi.org/10.1038/nrendo.2012.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing