Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identification and characterization of nucleobase-modified aptamers by click-SELEX

Abstract

Aptamers are single-stranded oligonucleotides that are in vitro-selected to recognize their target molecule with high affinity and specificity. As they consist of the four canonical nucleobases, their chemical diversity is limited, which in turn limits the addressable target spectrum. Introducing chemical modifications into nucleic acid libraries increases the interaction capabilities of the DNA and thereby the target spectrum. Here, we describe a protocol to select nucleobase-modified aptamers by using click chemistry (CuAAC) to introduce the preferred chemical modification. The use of click chemistry to modify the DNA library enables the introduction of a wide range of possible functionalities, which can be customized to the requirements of the target molecule and the desired application. This protocol yields modified DNA aptamers with extended interaction properties that are not accessible with the canonical set of nucleotides. After synthesis of the starting library containing a commercially available, alkyne-modified uridine (5-ethynyl-deoxyuridine (EdU)) instead of thymidine, the library is functionalized with the modification of choice by CuAAC. The thus-modified DNA is incubated with the target molecule and the best binding sequences are recovered. The chemical modification is removed during the amplification process. Therefore, this protocol is compatible with conventional amplification procedures and avoids enzymatic incompatibility problems associated with more extensive nucleobase modifications. After single-strand generation, the modification is reintroduced into the enriched library, which can then be subjected to the subsequent selection cycle. The duration of each selection cycle as outlined in the protocol is 1 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the click-SELEX process.
Figure 2: Azide-modified competitor oligonucleotides.
Figure 3: HPLC-chromatogram of nucleoside digest of unmodified and benzyl-modified FT2-pool.
Figure 4: PAGE gel of 32P-labeled starting library and background binding determination in the presence of different competitors.
Figure 5: Background binding determination of differently modified starting libraries on THC-modified and unmodified beads.
Figure 6: Impact of clicked competitor on sequence frequency and kD determination of p5.
Figure 7: Binding assays of libraries of SELEX cycles as well as clones from click-SELEX for THC.
Figure 8: Modulation of binding of clickmers C12 and p5 by changing the clicked-in moiety.

Similar content being viewed by others

References

  1. Gierlich, J., Burley, G.A., Gramlich, P.M.E., Hammond, D.M. & Carell, T. Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org. Lett. 8, 3639–3642 (2006).

    CAS  PubMed  Google Scholar 

  2. El-Sagheer, A.H. & Brown, T. Click chemistry with DNA. Chem. Soc. Rev. 39, 1388 (2010).

    CAS  PubMed  Google Scholar 

  3. Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V. & Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780–791 (2015).

    CAS  PubMed  Google Scholar 

  4. Sirbu, B.M., Couch, F.B. & Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kukwikila, M., Gale, N., El-Sagheer, A.H., Brown, T. & Tavassoli, A. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat. Chem. 9, 1089–1098 (2017).

    CAS  PubMed  Google Scholar 

  6. Gierlich, J. et al. Synthesis of highly modified DNA by a combination of PCR with alkyne-bearing triphosphates and click chemistry. Chemistry 13, 9486–9494 (2007).

    CAS  PubMed  Google Scholar 

  7. Tolle, F., Brändle, G.M., Matzner, D. & Mayer, G. A versatile approach towards nucleobase-modified aptamers. Angew. Chem. 54, 10971–10974 (2015).

    CAS  Google Scholar 

  8. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  9. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  10. Taylor, A.I. & Holliger, P. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers. Nat. Protoc. 10, 1625–1642 (2015).

    CAS  PubMed  Google Scholar 

  11. Mayer, G. et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 1993–2004 (2010).

    CAS  PubMed  Google Scholar 

  12. Sefah, K., Shangguan, D., Xiong, X., O'Donoghue, M.B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    CAS  PubMed  Google Scholar 

  13. Pfeiffer, F. & Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. 4, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, D.R. et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. USA 109, 19971–19976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimoto, M., Yamashige, R., Matsunaga, K., Yokoyama, S. & Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).

    CAS  PubMed  Google Scholar 

  17. Pfeiffer, F., Rosenthal, M., Siegl, J., Ewers, J. & Mayer, G. Customised nucleic acid libraries for enhanced aptamer selection and performance. Curr. Opin. Biotechnol. 48, 111–118 (2017).

    CAS  PubMed  Google Scholar 

  18. Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl. Acad. Sci. USA 111, 1449–1454 (2014).

    CAS  PubMed  Google Scholar 

  19. Mendonsa, S.D. & Bowser, M.T. In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126, 20–21 (2004).

    CAS  PubMed  Google Scholar 

  20. Daniels, D.A., Chen, H., Hicke, B.J., Swiderek, K.M. & Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA 100, 15416–15421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gawande, B.N. et al. Selection of DNA aptamers with two modified bases. Proc. Natl. Acad. Sci. U.S.A. 114, 2898–2903 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollenstein, M. DNA catalysis: the chemical repertoire of DNAzymes. Molecules 20, 20777–20804 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, C. et al. DNA-catalyzed amide hydrolysis. J. Am. Chem. Soc. 138, 2106–2109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lipi, F., Chen, S., Chakravarthy, M., Rakesh, S. & Veedu, R.N. In vitro evolution of chemically-modified nucleic acid aptamers: pros & cons, and comprehensive selection strategies. RNA Biol. 13, 1232–1245 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Matsunaga, K.I., Kimoto, M. & Hirao, I. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion SELEX (ExSELEX) using two types of libraries composed of five different bases. J. Am. Chem. Soc. 139, 324–334 (2017).

    CAS  PubMed  Google Scholar 

  26. Kimoto, M., Matsunaga, K. & Hirao, I. DNA aptamer generation by genetic alphabet expansion SELEX (ExSELEX) using an unnatural base pair system. Methods Mol. Biol. 1380, 47–60 (2016).

    CAS  PubMed  Google Scholar 

  27. Latham, J.A., Johnson, R. & Toole, J.J. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. 22, 2817–2822 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolle, F., Wilke, J., Wengel, J. & Mayer, G. By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS ONE 9, e114693 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Caruthers, M.H. Chemical synthesis of DNA and DNA analogs. Acc. Chem. Res. 24, 278–284 (1991).

    CAS  Google Scholar 

  30. Hall, L.M., Gerowska, M. & Brown, T. A highly fluorescent DNA toolkit: synthesis and properties of oligonucleotides containing new Cy3, Cy5 and Cy3B monomers. Nucleic Acids Res. 40, e108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Suzuki, T. et al. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J. Med. Chem. 55, 9562–9575 (2012).

    CAS  PubMed  Google Scholar 

  32. Shim, J.-Y., Bertalovitz, A.C. & Kendall, D.A. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J. Biol. Chem. 286, 33422–33435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547, 468–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shao, Z. et al. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540, 602–606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hipolito, C.J., Hollenstein, M., Lam, C.H. & Perrin, D.M. Protein-inspired modified DNAzymes: dramatic effects of shortening side-chain length of 8-imidazolyl modified deoxyadenosines in selecting RNaseA mimicking DNAzymes. Org. Biomol. Chem. 9, 2266–2273 (2011).

    CAS  PubMed  Google Scholar 

  37. Besanceney-Webler, C. et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl. 50, 8051–8056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stoltenburg, R., Nikolaus, N. & Strehlitz, B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J. Analyt. Methods Chem. 2012, 415697 (2012).

    Google Scholar 

  39. Nutiu, R. & Li, Y. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. Engl. 44, 1061–1065 (2005).

    CAS  PubMed  Google Scholar 

  40. Yang, K.A., Pei, R., Stefanovic, D. & Stojanovic, M.N. Optimizing cross-reactivity with evolutionary search for sensors. J. Am. Chem. Soc. 134, 1642–1647 (2012).

    CAS  PubMed  Google Scholar 

  41. Hermanson, G.T. Bioconjugate techniques (Academic press, 2013).

  42. Srisawat, C. & Engelke, D.R. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7, 632–641 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bittker, J.A., Le, B.V. & Liu, D.R. Nucleic acid evolution and minimization by nonhomologous random recombination. Nat. Biotechnol. 20, 1024–1029 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tahiri-Alaoui, A. et al. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res. 30, e45 (2002).

    PubMed  PubMed Central  Google Scholar 

  45. Stoltenburg, R., Reinemann, C. & Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383, 83–91 (2005).

    CAS  PubMed  Google Scholar 

  46. Wang, C., Yang, G., Luo, Z. & Ding, H. In vitro selection of high-affinity DNA aptamers for streptavidin. Acta Biochim. Biophys. Sin. 41, 335–340 (2009).

    CAS  PubMed  Google Scholar 

  47. Jenison, R.D., Gill, S.C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

    CAS  PubMed  Google Scholar 

  48. Hamedani, N.S. et al. Capture and release (CaR): a simplified procedure for one-tube isolation and concentration of single-stranded DNA during SELEX. Chem. Commun. 51, 1135–1138 (2015).

    CAS  Google Scholar 

  49. Avci-Adali, M., Paul, A., Wilhelm, N., Ziemer, G. & Wendel, H.P. Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 15, 1–11 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. McKeague, M. et al. Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal. Chem. 87, 8608–8612 (2015).

    CAS  PubMed  Google Scholar 

  51. Jauset Rubio, M. et al. beta-Conglutin dual aptamers binding distinct aptatopes. Anal. Bioanal. Chem. 408, 875–884 (2015).

    PubMed  Google Scholar 

  52. Kellenberger, C.A. et al. A minimalist biosensor: quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer. RNA Biol. 12, 1189–1197 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Tolle, F. & Mayer, G. Preparation of SELEX samples for next-generation sequencing. Methods Mol. Biol. 1380, 77–84 (2016).

    CAS  PubMed  Google Scholar 

  54. Blank, M. Next-generation analysis of deep sequencing data: bringing light into the black box of SELEX experiments. Methods Mol. Biol. 1380, 85–95 (2016).

    CAS  PubMed  Google Scholar 

  55. Thiel, W.H. & Giangrande, P.H. Analyzing HT-SELEX data with the Galaxy Project tools—a web based bioinformatics platform for biomedical research. Methods 97, 3–10 (2016).

    CAS  PubMed  Google Scholar 

  56. Beier, R., Boschke, E. & Labudde, D. New strategies for evaluation and analysis of SELEX experiments. BioMed Res. Intl. 2014, 849743 (2014).

    Google Scholar 

  57. Nguyen Quang, N., Perret, G. & Duconge, F. Applications of high-throughput sequencing for in vitro selection and characterization of aptamers. Pharmaceuticals 9 http://dx.doi.org/10.3390/ph9040076 (2016).

  58. Phosphate buffer. Cold Spring Harb Protoc http://dx.doi.org/10.1101/pdb.rec8543 (2006).

  59. Ingale, S.A., Mei, H., Leonard, P. & Seela, F. Ethynyl side chain hydration during synthesis and workup of 'clickable' oligonucleotides: bypassing acetyl group formation by triisopropylsilyl protection. J. Org. Chem. 78, 11271–11282 (2013).

    CAS  PubMed  Google Scholar 

  60. Tolle, F., Rosenthal, M., Pfeiffer, F. & Mayer, G. Click reaction on solid phase enables high fidelity synthesis of nucleobase-modified DNA. Bioconjug. Chem. 27, 500–503 (2016).

    CAS  PubMed  Google Scholar 

  61. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 38, W695–W699 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  64. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was made possible through funding by BMWi-ZIM (grant no. KF3058901SK2) and the Deutsche Forschungsgemeinschaft (grant nos. MA3442/4-1 and MA3442/4-2). We thank J.L. Schultze, K. Händler and M. Beyer (Life and Medical Sciences Institute and German Center for Neurodegenerative Diseases, Bonn) for their support regarding next-generation sequencing and M. Blank and C. Gröber (AptaIT, Munich, Germany) for their support regarding the NGS analysis. We also thank Protzek Gesellschaft für biomedizinische Technik mbH (Lörrach, Germany) for support and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.P., F.T. and G.M. conceived and designed the protocol and wrote the manuscript. F.P., F.T. and M.R. performed the experiments. G.B. and J.E. synthesized the azides used in this study.

Corresponding author

Correspondence to Günter Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, F., Tolle, F., Rosenthal, M. et al. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat Protoc 13, 1153–1180 (2018). https://doi.org/10.1038/nprot.2018.023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.023

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing