Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

In vitro selection of aptamers and their applications

Abstract

The introduction of the in vitro evolution method known as SELEX (systematic evolution of ligands by exponential enrichment) more than 30 years ago led to the conception of versatile synthetic receptors known as aptamers. Offering many benefits such as low cost, high stability and flexibility, aptamers have sparked innovation in molecular diagnostics, enabled advances in synthetic biology and facilitated new therapeutic approaches. The SELEX method itself is inherently adaptable and offers near limitless possibilities in yielding functional nucleic acid ligands. This Primer serves to provide guidance on experimental design and data analysis, and highlights new growth areas for this impactful technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General outline of the SELEX process and aptamer identification.
Fig. 2: Decision-making for SELEX design.
Fig. 3: Representative analysis of the in vitro selection process.
Fig. 4: Representative characterization techniques of aptamer candidates.
Fig. 5: Aptamers are powerful tools for molecular imaging.
Fig. 6: Aptamers that bind to light up fluorophores.

Similar content being viewed by others

References

  1. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). One of the original three selection/aptamer papers, this work describes in vitro selection of RNA aptamers that bind T4 DNA polymerase and coined the term ‘SELEX’, and is required reading for anyone interested in the aptamer field.

    ADS  Google Scholar 

  2. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). One of the original three selection/aptamer papers, this work describes in vitro selection of RNA aptamers that bind organic dyes and coins the term ‘aptamer’, and is required reading for anyone interested in the aptamer field.

    ADS  Google Scholar 

  3. Mills, D. R., Peterson, R. & Spiegelman, S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).

    ADS  Google Scholar 

  4. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990). One of the original three selection/aptamer papers, this work describes in vitro selection of an RNA enzyme that can cleave single-stranded DNA, and is required reading for anyone interested in the functional nucleic acid field.

    ADS  Google Scholar 

  5. Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57264 (2020).

    Google Scholar 

  6. Jing, M. & Bowser, M. T. Methods for measuring aptamer–protein equilibria: a review. Anal. Chim. Acta 686, 9–18 (2011).

    Google Scholar 

  7. Kalra, P., Dhiman, A., Cho, W. C., Bruno, J. G. & Sharma, T. K. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci. 5, 41 (2018).

    Google Scholar 

  8. Weill, L. Selection and evolution of NTP-specific aptamers. Nucleic Acids Res. 32, 5045–5058 (2004).

    Google Scholar 

  9. Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    Google Scholar 

  10. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    ADS  Google Scholar 

  11. Tahiri-Alaoui, A. et al. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res. 30, e45 (2002).

    Google Scholar 

  12. Burmeister, P. E. et al. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. 12, 25–33 (2005).

    Google Scholar 

  13. Jellinek, D. et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34, 11363–11372 (1995).

    Google Scholar 

  14. Barciszewski, J., Medgaard, M., Koch, T., Kurreck, J. & Erdmann, V. A. Locked nucleic acid aptamers. Methods Mol. Biol. 535, 165–186 (2009).

    Google Scholar 

  15. Ichida, J. K. et al. An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802–2803 (2005).

    Google Scholar 

  16. Eremeeva, E. et al. Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Res. 47, 4927–4939 (2019).

    Google Scholar 

  17. King, D. J. et al. Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-κB RelA(p65) and p50. Biochemistry 41, 9696–9706 (2002).

    Google Scholar 

  18. Matsunaga, K. et al. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications. Sci. Rep. 5, 18478 (2015).

    ADS  Google Scholar 

  19. Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl Acad. Sci. USA 111, 1449–1454 (2014).

    ADS  Google Scholar 

  20. Zumrut, H. et al. Ligand-guided selection with artificially expanded genetic information systems against TCR-CD3ε. Biochemistry 59, 552–562 (2020).

    Google Scholar 

  21. Dhami, K. et al. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res. 42, 10235–10244 (2014).

    Google Scholar 

  22. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010). Using modified aptamers, called SOMAmers, this work demonstrates for the first time a proteomics platform able to detect more than 800 proteins with a median picomolar detection limit.

    ADS  Google Scholar 

  23. Pfeiffer, F. et al. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat. Protoc. 13, 1153–1180 (2018).

    Google Scholar 

  24. Temme, J. S. & Krauss, I. J. SELMA: selection with modified aptamers. Curr. Protoc. Chem. Biol. 7, 73–92 (2015).

    Google Scholar 

  25. Unrau, P. J. & Bartel, D. P. RNA-catalysed nucleotide synthesis. Nature 395, 260–263 (1998).

    ADS  Google Scholar 

  26. Hall, B. et al. Design, synthesis, and amplification of DNA pools for in vitro selection. Curr. Protoc. Mol. Biol. 88, 24.22.21–24.22.27 (2009).

    Google Scholar 

  27. Davis, J. H. & Szostak, J. W. Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl Acad. Sci. USA 99, 11616–11621 (2002).

    ADS  Google Scholar 

  28. Yang, K. A., Pei, R., Stefanovic, D. & Stojanovic, M. N. Optimizing cross-reactivity with evolutionary search for sensors. J. Am. Chem. Soc. 134, 1642–1647 (2012).

    Google Scholar 

  29. Eaton, B. E. et al. Post-SELEX combinatorial optimization of aptamers. Bioorg Med. Chem. 5, 1087–1096 (1997).

    Google Scholar 

  30. Futami, K., Kimoto, M., Lim, Y. W. S. & Hirao, I. Genetic alphabet expansion provides versatile specificities and activities of unnatural-base DNA aptamers targeting cancer cells. Mol. Ther. Nucleic Acids 14, 158–170 (2019).

    Google Scholar 

  31. McKeague, M. & Derosa, M. C. Challenges and opportunities for small molecule aptamer development. J. Nucleic Acids 2012, 748913 (2012).

    Google Scholar 

  32. Huizenga, D. E. & Szostak, J. W. A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).

    Google Scholar 

  33. Stoltenburg, R., Nikolaus, N. & Strehlitz, B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J. Anal. Methods Chem. 2012, 415697 (2012).

    Google Scholar 

  34. Nutiu, R. & Li, Y. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44, 1061–1065 (2005). This work reports a method that has been widely used to develop aptamer biosensors that are dependent on conformational changes of the aptamer in the presence of the target.

    Google Scholar 

  35. McKeague, M. et al. Analysis of in vitro aptamer selection parameters. J. Mol. Evol. 81, 150–161 (2015). One of the most comprehensive database efforts to date, this paper summarizes aptamer and SELEX trends from 1990 to 2013, providing context and recommendations for researchers.

    ADS  Google Scholar 

  36. Murphy, M. B., Fuller, S. T., Richardson, P. M. & Doyle, S. A. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res. 31, e110 (2003).

    Google Scholar 

  37. Mayer, G. & Hover, T. In vitro selection of ssDNA aptamers using biotinylated target proteins. Methods Mol. Biol. 535, 19–32 (2009).

    Google Scholar 

  38. Stoltenburg, R., Reinemann, C. & Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383, 83–91 (2005). Widely cited as a followed method, this paper reports two innovations on the original selection approach: using magnetic beads for immobilization of the target, and enrichment monitoring and recovery of single-stranded DNA by fluorescently labelled primer.

    Google Scholar 

  39. Lou, X. et al. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl Acad. Sci. USA 106, 2989–2994 (2009).

    ADS  Google Scholar 

  40. Hicke, B. J. et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem. 276, 48644–48654 (2001).

    Google Scholar 

  41. Morris, K. N., Jensen, K. B., Julin, C. M., Weil, M. & Gold, L. High affinity ligands from in vitro selection: complex targets. Proc. Natl Acad. Sci. USA 95, 2902–2907 (1998).

    ADS  Google Scholar 

  42. Duan, Y., Zhang, C., Wang, Y. & Chen, G. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol. Biol. Rep. 49, 7979–7993 (2022).

    Google Scholar 

  43. Zumrut, H. E. et al. Integrating ligand–receptor interactions and in vitro evolution for streamlined discovery of artificial nucleic acid ligands. Mol. Ther. Nucleic Acids 17, 150–163 (2019).

    Google Scholar 

  44. Mayer, G. et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 1993–2004 (2010).

    Google Scholar 

  45. Cheng, C., Chen, Y. H., Lennox, K. A., Behlke, M. A. & Davidson, B. L. In vivo SELEX for identification of brain-penetrating aptamers. Mol. Ther. Nucleic Acids 2, e67 (2013).

    Google Scholar 

  46. Li, S. et al. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J. Pathol. 218, 327–336 (2009).

    Google Scholar 

  47. Le, A. T. H. et al. How to develop and prove high-efficiency selection of ligands from oligonucleotide libraries: a universal framework for aptamers and DNA-encoded small-molecule ligands. Anal. Chem. 93, 5343–5354 (2021).

    Google Scholar 

  48. Ouellet, E., Foley, J. H., Conway, E. M. & Haynes, C. Hi-Fi SELEX: a high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnol. Bioeng. 112, 1506–1522 (2015).

    Google Scholar 

  49. Berezovski, M. et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127, 3165–3171 (2005).

    Google Scholar 

  50. Mondal, B., Ramlal, S., Lavu, P. S., Murali, H. S. & Batra, H. V. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl. Microbiol. Biotechnol. 99, 9791–9803 (2015).

    Google Scholar 

  51. Shangguan, D. et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl Acad. Sci. USA 103, 11838–11843 (2006).

    ADS  Google Scholar 

  52. Thiel, W. H. et al. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol. Biol. 1218, 187–199 (2015).

    Google Scholar 

  53. Wong, I. & Lohman, T. M. A double-filter method for nitrocellulose-filter binding: application to protein–nucleic acid interactions. Proc. Natl Acad. Sci. USA 90, 5428–5432 (1993).

    ADS  Google Scholar 

  54. White, R. et al. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. 4, 567–573 (2001).

    ADS  Google Scholar 

  55. Mendonsa, S. D. & Bowser, M. T. In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126, 20–21 (2004).

    Google Scholar 

  56. Tsai, R. Y. & Reed, R. R. Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol. Cell Biol. 18, 6447–6456 (1998).

    Google Scholar 

  57. Zumrut, H. E., Ara, M. N., Fraile, M., Maio, G. & Mallikaratchy, P. Ligand-guided selection of target-specific aptamers: a screening technology for identifying specific aptamers against cell-surface proteins. Nucleic Acid. Ther. 26, 190–198 (2016).

    Google Scholar 

  58. Zumrut, H. E. et al. Ligand-guided selection of aptamers against T-cell receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells. Anal. Biochem. 512, 1–7 (2016).

    Google Scholar 

  59. Mi, J. et al. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22–24 (2010).

    Google Scholar 

  60. Udofot, O. et al. Delivery of cell-specific aptamers to the arterial wall with an occlusion perfusion catheter. Mol. Ther. Nucleic Acids 16, 360–366 (2019).

    Google Scholar 

  61. Komarova, N. & Kuznetsov, A. Inside the black box: what makes SELEX better. Molecules 24, 3598 (2019).

    Google Scholar 

  62. Irvine, D., Tuerk, C. & Gold, L. SELEXION: systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol. 222, 739–761 (1991).

    Google Scholar 

  63. Vant-Hull, B., Payano-Baez, A., Davis, R. H. & Gold, L. The mathematics of SELEX against complex targets. J. Mol. Biol. 278, 579–597 (1998).

    Google Scholar 

  64. Aita, T., Nishigaki, K. & Husimi, Y. Theoretical consideration of selective enrichment in in vitro selection: optimal concentration of target molecules. Math. Biosci. 240, 201–211 (2012).

    MathSciNet  MATH  Google Scholar 

  65. Ray, P. & White, R. R. Cell-SELEX identifies a “sticky” RNA aptamer sequence. J. Nucleic Acids 2017, 4943072 (2017).

    Google Scholar 

  66. Tang, Z. et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 79, 4900–4907 (2007).

    Google Scholar 

  67. Thiel, K. W. et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 40, 6319–6337 (2012).

    Google Scholar 

  68. Tolle, F., Wilke, J., Wengel, J. & Mayer, G. By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS ONE 9, e114693 (2014).

    ADS  Google Scholar 

  69. Tsuji, S. et al. Effective isolation of RNA aptamer through suppression of PCR bias. Biochem. Biophys. Res. Commun. 386, 223–226 (2009).

    Google Scholar 

  70. Levay, A. et al. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Res. 43, e82 (2015).

    Google Scholar 

  71. Vanbrabant, J., Leirs, K., Vanschoenbeek, K., Lammertyn, J. & Michiels, L. reMelting curve analysis as a tool for enrichment monitoring in the SELEX process. Analyst 139, 589–595 (2014).

    ADS  Google Scholar 

  72. Takahashi, M. et al. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Sci. Rep. 6, 33697 (2016).

    ADS  Google Scholar 

  73. Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    Google Scholar 

  74. Yang, Z., Chen, F., Alvarado, J. B. & Benner, S. A. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133, 15105–15112 (2011).

    Google Scholar 

  75. Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S. & Hirao, I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 37, e14 (2009).

    Google Scholar 

  76. Musheev, M. U. & Krylov, S. N. Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Anal. Chim. Acta 564, 91–96 (2006).

    Google Scholar 

  77. Wang, T., Chen, C., Larcher, L. M., Barrero, R. A. & Veedu, R. N. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 37, 28–50 (2019).

    Google Scholar 

  78. Liu, Z., Chen, T. & Romesberg, F. E. Evolved polymerases facilitate selection of fully 2′-OMe-modified aptamers. Chem. Sci. 8, 8179–8182 (2017).

    Google Scholar 

  79. Lapa, S. A., Chudinov, A. V. & Timofeev, E. N. The toolbox for modified aptamers. Mol. Biotechnol. 58, 79–92 (2016).

    Google Scholar 

  80. Svobodova, M., Pinto, A., Nadal, P. & CK, O. S. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal. Bioanal. Chem. 404, 835–842 (2012).

    Google Scholar 

  81. Tolnai, Z. et al. A simple modification increases specificity and efficiency of asymmetric PCR. Anal. Chim. Acta 1047, 225–230 (2019).

    Google Scholar 

  82. Civit, L., Fragoso, A. & O’Sullivan, C. K. Evaluation of techniques for generation of single-stranded DNA for quantitative detection. Anal. Biochem. 431, 132–138 (2012).

    Google Scholar 

  83. Hwang, C. & Carothers, J. M. Label-free selection of RNA aptamers for metabolic engineering. Methods 106, 37–41 (2016).

    Google Scholar 

  84. Bell, D. R. et al. In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc. Natl Acad. Sci. USA 117, 8486–8493 (2020).

    ADS  Google Scholar 

  85. Mohammadinezhad, R., Jalali, S. A. H. & Farahmand, H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. Anal. Methods 12, 3823–3835 (2020).

    Google Scholar 

  86. Thiel, W. H. Galaxy workflows for Web-based bioinformatics analysis of aptamer high-throughput sequencing data. Mol. Ther. Nucleic Acids 5, e345 (2016).

    ADS  Google Scholar 

  87. Thiel, W. H. & Giangrande, P. H. Analyzing HT-SELEX data with the Galaxy Project tools — a web based bioinformatics platform for biomedical research. Methods 97, 3–10 (2016).

    Google Scholar 

  88. Kolm, C. et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rep. 10, 1–16 (2020).

    Google Scholar 

  89. Schutze, T. et al. Probing the SELEX process with next-generation sequencing. PLoS ONE 6, e29604 (2011).

    ADS  Google Scholar 

  90. Ruscito, A. et al. In vitro selection and characterization of DNA aptamers to a small molecule target. Curr. Protoc. Chem. Biol. 9, 233–268 (2017).

    Google Scholar 

  91. Mastronardi, E., Cyr, K., Monreal, C. M. & DeRosa, M. C. Selection of DNA aptamers for root exudate l-serine using multiple selection strategies. J. Agric. Food Chem. 69, 4294–4306 (2021).

    Google Scholar 

  92. Misono, T. S. & Kumar, P. K. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. 342, 312–317 (2005).

    Google Scholar 

  93. Lamberti, I. et al. In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing. Methods 97, 58–68 (2016).

    Google Scholar 

  94. Gao, S. et al. A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 294, 121997 (2023).

    Google Scholar 

  95. Poolsup, S. et al. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. Mol. Ther. Nucleic Acids 31, 731–743 (2023).

    Google Scholar 

  96. Esposito, C. L. et al. Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Mol. Ther. Nucleic Acids 23, 982–994 (2021).

    Google Scholar 

  97. Bai, C. et al. Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens. Bioelectron. 110, 162–167 (2018).

    Google Scholar 

  98. Mosing, R. K., Mendonsa, S. D. & Bowser, M. T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107–6112 (2005).

    Google Scholar 

  99. Davis, K. A., Abrams, B., Lin, Y. & Jayasena, S. D. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res. 24, 702–706 (1996).

    Google Scholar 

  100. Fitzwater, T. & Polisky, B. A SELEX primer. Methods Enzymol. 267, 275–301 (1996).

    Google Scholar 

  101. Jensen, K. B., Atkinson, B. L., Willis, M. C., Koch, T. H. & Gold, L. Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc. Natl Acad. Sci. USA 92, 12220–12224 (1995).

    ADS  Google Scholar 

  102. Oteng, E. K., Gu, W. & McKeague, M. High-efficiency enrichment enables identification of aptamers to circulating Plasmodium falciparum-infected erythrocytes. Sci. Rep. 10, 9706 (2020).

    ADS  Google Scholar 

  103. Stoltenburg, R. & Strehlitz, B. Refining the results of a classical SELEX experiment by expanding the sequence data set of an aptamer pool selected for protein A. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19020642 (2018).

    Article  Google Scholar 

  104. Ambardar, S., Gupta, R., Trakroo, D., Lal, R. & Vakhlu, J. High throughput sequencing: an overview of sequencing chemistry. Indian J. Microbiol. 56, 394–404 (2016).

    Google Scholar 

  105. Soldevilla, M. M. et al. Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PLoS ONE 12, e0185169 (2017).

    Google Scholar 

  106. Kohlberger, M. & Gadermaier, G. SELEX: critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2244 (2021). This comprehensive review offers helpful considerations and quality control measures for SELEX experiments.

    Article  Google Scholar 

  107. MacKenzie, M. & Argyropoulos, C. An introduction to nanopore sequencing: past, present, and future considerations. Micromachines 14, 459 (2023).

    Google Scholar 

  108. Alam, K. K., Chang, J. L. & Burke, D. H. FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol. Ther. Nucleic Acids 4, e230 (2015).

    Google Scholar 

  109. Caroli, J., Taccioli, C., De La Fuente, A., Serafini, P. & Bicciato, S. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics 32, 161–164 (2016).

    Google Scholar 

  110. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Google Scholar 

  111. Jiang, P. et al. MPBind: a meta-motif-based statistical framework and pipeline to predict binding potential of SELEX-derived aptamers. Bioinformatics 30, 2665–2667 (2014).

    Google Scholar 

  112. Shieh, K. R. et al. AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX. Bioinformatics 36, 2905–2906 (2020).

    Google Scholar 

  113. Hiller, M., Pudimat, R., Busch, A. & Backofen, R. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res. 34, e117 (2006).

    Google Scholar 

  114. Ishida, R. et al. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 48, e82 (2020).

    Google Scholar 

  115. Hoinka, J., Backofen, R. & Przytycka, T. M. AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol. Ther. Nucleic Acids 11, 515–517 (2018).This paper describes bioinformatics software that is freely available to aptamer researchers and has multiple functions, including processing sequencing data, clustering similar sequences and predicting secondary structure.

    Google Scholar 

  116. Yang, Z. et al. Conversion strategy using an expanded genetic alphabet to assay nucleic acids. Anal. Chem. 85, 4705–4712 (2013).

    Google Scholar 

  117. McKeague, M. et al. Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal. Chem. 87, 8608–8612 (2015). One challenge of aptamer work is that the apparent KD can change depending on the method used to assess aptamer-target binding; this paper gives examples of this challenge and also makes suggestions on best practices for affinity characterization.

    Google Scholar 

  118. Bottari, F. et al. Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds. J. Am. Chem. Soc. 142, 19622–19630 (2020).

    Google Scholar 

  119. Hirka, S. & McKeague, M. Quantification of aptamer–protein binding with fluorescence anisotropy. Aptamers 5, 1–6 (2021).

    Google Scholar 

  120. Chang, A. L., McKeague, M., Liang, J. C. & Smolke, C. D. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal. Chem. 86, 3273–3278 (2014).

    Google Scholar 

  121. Slavkovic, S. et al. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism. Sci. Rep. 10, 18944 (2020).

    Google Scholar 

  122. Jenison, R. D., Gill, S. C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

    ADS  Google Scholar 

  123. Roxo, C., Kotkowiak, W. & Pasternak, A. G-Quadruplex-forming aptamers — characteristics, applications, and perspectives. Molecules https://doi.org/10.3390/molecules24203781 (2019). This review summarizes several important aspects of working with G-quadruplexes, a common secondary structure for DNA aptamers.

    Article  Google Scholar 

  124. Luo, X. et al. Computational approaches toward the design of pools for the in vitro selection of complex aptamers. RNA 16, 2252–2262 (2010).

    Google Scholar 

  125. Le, T. T., Chumphukam, O. & Cass, A. E. G. Determination of minimal sequence for binding of an aptamer. A comparison of truncation and hybridization inhibition methods. RSC Adv. 4, 47227–47233 (2014). This paper provides insights into investigating minimal sequences, as there are several practical advantages of understanding exactly which bases are implicated in target binding and which are important for secondary structure.

    ADS  Google Scholar 

  126. Kinghorn, A. B. et al. Aptamer affinity maturation by resampling and microarray selection. Anal. Chem. 88, 6981–6985 (2016).

    Google Scholar 

  127. Earnest, K. G. et al. Development and characterization of a DNA aptamer for MLL-AF9 expressing acute myeloid leukemia cells using whole cell-SELEX. Sci. Rep. 11, 19174 (2021).

    ADS  Google Scholar 

  128. Bishop, G. R. & Chaires, J. B. Characterization of DNA structures by circular dichroism. Curr. Protoc. Nucleic Acid Chem. https://doi.org/10.1002/0471142700.nc0711s11 (2003).

    Article  Google Scholar 

  129. Del Villar-Guerra, R., Trent, J. O. & Chaires, J. B. G-Quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. 57, 7171–7175 (2018).

    Google Scholar 

  130. Zhang, N. et al. Structural biology for the molecular insight between aptamers and target proteins. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22084093 (2021).

    Article  Google Scholar 

  131. Kratschmer, C. & Levy, M. Effect of chemical modifications on aptamer stability in serum. Nucleic Acid. Ther. 27, 335–344 (2017).

    Google Scholar 

  132. Griffin, L. C., Tidmarsh, G. F., Bock, L. C., Toole, J. J. & Leung, L. L. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81, 3271–3276 (1993).

    Google Scholar 

  133. Rangel, A. E., Chen, Z., Ayele, T. M. & Heemstra, J. M. In vitro selection of an XNA aptamer capable of small-molecule recognition. Nucleic Acids Res. 46, 8057–8068 (2018).

    Google Scholar 

  134. Bauer, M., Strom, M., Hammond, S. D. & Shigdar, S. Anything you can do, I can do better: can aptamers replace antibodies in clinical diagnostic applications? Molecules https://doi.org/10.3390/molecules24234377 (2019).

    Article  Google Scholar 

  135. Li, F. et al. Aptamers facilitating amplified detection of biomolecules. Anal. Chem. 87, 274–292 (2015).

    Google Scholar 

  136. McConnell, E. M., Nguyen, J. & Li, Y. Aptamer-based biosensors for environmental monitoring. Front. Chem. https://doi.org/10.3389/fchem.2020.00434 (2020). This work presents a comprehensive review of aptamer applications for environmental monitoring sorted into examples of water, soil and air monitoring.

    Article  Google Scholar 

  137. Kalita, J. J., Sharma, P. & Bora, U. Recent developments in application of nucleic acid aptamer in food safety. Food Control. 145, 109406 (2023).

    Google Scholar 

  138. Mohamad, N. et al. Future perspectives on aptamer for application in food authentication. Anal. Biochem. 656, 114861 (2022).

    Google Scholar 

  139. Hu, Z. et al. Aptamer based biosensor platforms for neurotransmitters analysis. Trends Anal. Chem. 162, 117021 (2023).

    Google Scholar 

  140. Futane, A., Narayanamurthy, V., Jadhav, P. & Srinivasan, A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid. Nanofluid. 27, 15 (2023).

    Google Scholar 

  141. Waldmann, T. A. Monoclonal antibodies in diagnosis and therapy. Science 252, 1657–1662 (1991).

    ADS  Google Scholar 

  142. Meyer, M., Scheper, T. & Walter, J.-G. Aptamers: versatile probes for flow cytometry. Appl. Microbiol. Biotechnol. 97, 7097–7109 (2013).

    Google Scholar 

  143. Bauer, M., Macdonald, J., Henri, J., Duan, W. & Shigdar, S. The application of aptamers for immunohistochemistry. Nucleic Acid. Ther. 26, 120–126 (2016).

    Google Scholar 

  144. Toh, S. Y., Citartan, M., Gopinath, S. C. B. & Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015).

    Google Scholar 

  145. Bolognesi, M. M. et al. Multiplex staining by sequential immunostaining and antibody removal on routine tissue sections. J. Histochem. Cytochem. 65, 431–444 (2017).

    Google Scholar 

  146. Gomes de Castro, M. A., Höbartner, C. & Opazo, F. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy. PLoS ONE 12, e0173050 (2017).

    Google Scholar 

  147. Gray, B. P., Requena, M. D., Nichols, M. D. & Sullenger, B. A. Aptamers as reversible sorting ligands for preparation of cells in their native state. Cell Chem. Biol. 27, 232–244.e7 (2020).

    Google Scholar 

  148. Mora, J. et al. Next generation ligand binding assays — review of emerging technologies’ capabilities to enhance throughput and multiplexing. AAPS J. 16, 1175–1184 (2014).

    Google Scholar 

  149. Wang, X., Cohen, L., Wang, J. & Walt, D. R. Competitive immunoassays for the detection of small molecules using single molecule arrays. J. Am. Chem. Soc. 140, 18132–18139 (2018).

    Google Scholar 

  150. Wu, D., Katilius, E., Olivas, E., Dumont Milutinovic, M. & Walt, D. R. Incorporation of slow off-rate modified aptamers reagents in single molecule array assays for cytokine detection with ultrahigh sensitivity. Anal. Chem. 88, 8385–8389 (2016). This work combines SOMAmers with the single-molecule detection platform called Simoa, which affords excellent detection sensitivity via digital detection.

    Google Scholar 

  151. Wu, D., Milutinovic, M. D. & Walt, D. R. Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst 140, 6277–6282 (2015).

    ADS  Google Scholar 

  152. Rabia, L. A., Desai, A. A., Jhajj, H. S. & Tessier, P. M. Understanding and overcoming trade-offs between antibody affinity, specificity, stability and solubility. Biochem. Eng. J. 137, 365–374 (2018).

    Google Scholar 

  153. Shigdar, S. et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors 13, 13624 (2013).

    ADS  Google Scholar 

  154. Elskens, J. P., Elskens, J. M. & Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: current status and future prospects. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21124522 (2020). This review offers a comprehensive account of aptamers for diagnostic applications, sorted by type of modification (modified base, sequence truncation, extended genetic alphabet and so on).

    Article  Google Scholar 

  155. Opazo, F. et al. Aptamers as potential tools for super-resolution microscopy. Nat. Methods 9, 938–939 (2012).

    Google Scholar 

  156. Minhyeok, C. et al. Aptamer-based single-molecule imaging of insulin receptors in living cells. J. Biomed. Opt. 19, 1–7 (2013).

    Google Scholar 

  157. Strauss, S. et al. Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging. Nat. Methods 15, 685–688 (2018).

    Google Scholar 

  158. Delcanale, P. et al. Aptamers with tunable affinity enable single-molecule tracking and localization of membrane receptors on living cancer cells. Angew. Chem. Int. Ed. 59, 18546–18555 (2020).

    Google Scholar 

  159. Stojanovic, M. N., de Prada, P. & Landry, D. W. Fluorescent sensors based on aptamer self-assembly. J. Am. Chem. Soc. 122, 11547–11548 (2000).

    Google Scholar 

  160. Qi, X., Yan, X., Zhao, Y., Li, L. & Wang, S. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: a review. Trends Anal. Chem. 133, 116069 (2020).

    Google Scholar 

  161. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011). This paper reports the first in a series of fruit and vegetable-inspired RNA aptamers (in this case termed spinach) that light up when bound to specific fluorogens.

    ADS  Google Scholar 

  162. Kellenberger, C. A., Wilson, S. C., Sales-Lee, J. & Hammond, M. C. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J. Am. Chem. Soc. 135, 4906–4909 (2013).

    Google Scholar 

  163. Warner, K. D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).

    Google Scholar 

  164. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Google Scholar 

  165. Qiao, L., Benzigar, M. R., Subramony, J. A., Lovell, N. H. & Liu, G. Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 12, 34337–34361 (2020).

    Google Scholar 

  166. Ferguson, B. S. et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5, 213ra165 (2013).

    Google Scholar 

  167. Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 139, 11207–11213 (2017).

    Google Scholar 

  168. Wang, Z. et al. A wearable and deformable graphene-based affinity nanosensor for monitoring of cytokines in biofluids. Nanomaterials https://doi.org/10.3390/nano10081503 (2020).

    Article  Google Scholar 

  169. Hao, Z. et al. Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018).

    Google Scholar 

  170. Bruno, J. G. Potential inherent stimulation of the innate immune system by nucleic acid aptamers and possible corrective approaches. Pharmaceuticals https://doi.org/10.3390/ph11030062 (2018).

    Article  Google Scholar 

  171. Xiang, D. et al. Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5, 1083–1097 (2015).

    Google Scholar 

  172. Oney, S. et al. Development of universal antidotes to control aptamer activity. Nat. Med. 15, 1224–1228 (2009). Aptamers have unique therapeutic potential as they have a complementary antidote by nature, but this paper describes universal antidote molecules that can be applied in a sequence-independent manner.

    Google Scholar 

  173. Chabata, C. V., Frederiksen, J. W., Sullenger, B. A. & Gunaratne, R. Emerging applications of aptamers for anticoagulation and hemostasis. Curr. Opin. Hematol. 25, 382–388 (2018).

    Google Scholar 

  174. Lincoff, A. M. et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387, 349–356 (2016).

    Google Scholar 

  175. Greenhawt, M. et al. Diagnostic accuracy of vaccine and vaccine excipient testing in the setting of allergic reactions to COVID-19 vaccines: a systematic review and meta-analysis. Allergy 78, 71–83 (2023).

    Google Scholar 

  176. Torabi, R., Ranjbar, R., Halaji, M. & Heiat, M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: a systematic review. Mol. Cell. Probes 53, 101636 (2020).

    Google Scholar 

  177. Koudrina, A. et al. Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi. Chem. Commun. 58, 2870–2873 (2022).

    Google Scholar 

  178. Koudrina, A. & DeRosa, M. C. Advances in medical imaging: aptamer- and peptide-targeted MRI and CT contrast agents. ACS Omega 5, 22691–22701 (2020).

    Google Scholar 

  179. Koudrina, A. et al. Exploring the unique contrast properties of aptamer–gadolinium conjugates in magnetic resonance imaging for targeted imaging of thrombi. ACS Appl. Mater. Interfaces 13, 9412–9424 (2021).

    Google Scholar 

  180. Kichkailo, A. S. et al. Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells. Mol. Ther. Nucleic Acids 32, 267–288 (2023).

    Google Scholar 

  181. Pieve, C. D., Perkins, A. C. & Missailidis, S. Anti-MUC1 aptamers: radiolabelling with 99mTc and biodistribution in MCF-7 tumour-bearing mice. Nucl. Med. Biol. 36, 703–710 (2009).

    Google Scholar 

  182. Liu, H. Y., Yu, X., Liu, H., Wu, D. & She, J.-X. Co-targeting EGFR and survivin with a bivalent aptamer–dual siRNA chimera effectively suppresses prostate cancer. Sci. Rep. 6, 30346 (2016).

    ADS  Google Scholar 

  183. Kang, H., O’Donoghue, M. B., Liu, H. & Tan, W. A liposome-based nanostructure for aptamer directed delivery. Chem. Comm. 46, 249–251 (2010).

    Google Scholar 

  184. Bouvier-Müller, A. & Ducongé, F. Application of aptamers for in vivo molecular imaging and theranostics. Adv. Drug Deliv. Rev. 134, 94–106 (2018).

    Google Scholar 

  185. Shigdar, S. et al. The use of sensitive chemical antibodies for diagnosis: detection of low levels of EpCAM in breast cancer. PLoS ONE 8, e57613 (2013).

    ADS  Google Scholar 

  186. Xiang, D. et al. Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics 7, 4071–4086 (2017).

    Google Scholar 

  187. Lakhin, A. V., Tarantul, V. Z. & Gening, L. V. Aptamers: problems, solutions and prospects. Acta Naturae 5, 34–43 (2013).

    Google Scholar 

  188. Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006).

    Google Scholar 

  189. McKeague, M. et al. The minimum aptamer publication standards (MAPS guidelines) for de novo aptamer selection. Aptamers 6, 10–18 (2022). This work proposes a comprehensive set of guidelines, as consensus guidelines for publication are needed for the aptamer community to benefit from a centralized repository similar to the Protein Data Bank.

    Google Scholar 

  190. Yan, A. C. & Levy, M. Aptamer-mediated delivery and cell-targeting aptamers: room for improvement. Nucleic Acid. Ther. 28, 194–199 (2018).

    Google Scholar 

  191. Li, N. et al. Technical and biological issues relevant to cell typing with aptamers. J. Proteome Res. 8, 2438–2448 (2009).

    Google Scholar 

  192. Pestourie, C. et al. Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16, 323–335 (2006).

    Google Scholar 

  193. Spill, F. et al. Controlling uncertainty in aptamer selection. Proc. Natl Acad. Sci. USA 113, 12076–12081 (2016).

    ADS  Google Scholar 

  194. Stock, C. et al. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J. Physiol. 567, 225–238 (2005).

    Google Scholar 

  195. Chi, C. N., Engstrom, A., Gianni, S., Larsson, M. & Jemth, P. Two conserved residues govern the salt and pH dependencies of the binding reaction of a PDZ domain. J. Biol. Chem. 281, 36811–36818 (2006).

    Google Scholar 

  196. Eaton, B. E., Gold, L. & Zichi, D. A. Let’s get specific: the relationship between specificity and affinity. Chem. Biol. 2, 633–638 (1995).

    Google Scholar 

  197. Shangguan, D., Cao, Z. C., Li, Y. & Tan, W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin. Chem. 53, 1153–1155 (2007).

    Google Scholar 

  198. Freage, L., Jamal, D., Williams, N. B. & Mallikaratchy, P. R. A homodimeric aptamer variant generated from ligand-guided selection activates the T cell receptor cluster of differentiation 3 complex. Mol. Ther. Nucleic Acids 22, 167–178 (2020).

    Google Scholar 

  199. Batool, S. et al. Dimerization of an aptamer generated from ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells. Biochim. Biophys. Acta Gen. Subj. 1863, 232–240 (2019).

    Google Scholar 

  200. Lee, J. F., Hesselberth, J. R., Meyers, L. A. & Ellington, A. D. Aptamer database. Nucleic Acids Res. 32, D95–D100 (2004).

    Google Scholar 

  201. Li, J., Ma, X., Li, X. & Gu, J. PPAI: a web server for predicting protein–aptamer interactions. BMC Bioinformatics 21, 236 (2020).

    Google Scholar 

  202. Thodima, V., Pirooznia, M. & Deng, Y. RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinformatics 7, S6 (2006).

    Google Scholar 

  203. Bourlai, T., Moore, E. J. Biclustering for ssDNA aptamer motif protoypes. in IEEE-EMBS Int. Conf. Biomedical and Health Informatics (BHI) 292–295 (IEEE, 2016).

  204. Cruz-Toledo, J. et al. Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database 2012, bas006 (2012).

    Google Scholar 

  205. Qi, S. et al. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv. 55, 107902 (2022).

    Google Scholar 

  206. Kolm, C. et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rep. 10, 20917 (2020).

    Google Scholar 

  207. Wei, X., Ma, P., Imran Mahmood, K., Zhang, Y. & Wang, Z. A review: construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 253, 124003 (2023).

    Google Scholar 

  208. Gordon, C. K. L. et al. Click-particle display for base-modified aptamer discovery. ACS Chem. Biol. 14, 2652–2662 (2019).

    Google Scholar 

  209. Wang, J. et al. Multiparameter particle display (MPPD): a quantitative screening method for the discovery of highly specific aptamers. Angew. Chem. Int. Ed. 56, 744–747 (2017).

    ADS  Google Scholar 

  210. Hung, L. Y., Wang, C. H., Hsu, K. F., Chou, C. Y. & Lee, G. B. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab Chip 14, 4017–4028 (2014).

    Google Scholar 

  211. Lee, S. et al. A cross-contamination-free SELEX platform for a multi-target selection strategy. BioChip J. 7, 38–45 (2013).

    Google Scholar 

  212. Cox, J. C. et al. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108 (2002).

    Google Scholar 

  213. Hunniger, T., Wessels, H., Fischer, C., Paschke-Kratzin, A. & Fischer, M. Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal. Chem. 86, 10940–10947 (2014).

    Google Scholar 

  214. Townshend, B., Xiang, J. S., Manzanarez, G., Hayden, E. J. & Smolke, C. D. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat. Commun. 12, 1437 (2021).

    ADS  Google Scholar 

  215. Chinnappan, R. et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal. Chim. Acta 1101, 149–156 (2020).

    Google Scholar 

  216. Hong, K. L. & Sooter, L. J. In vitro selection of a single-stranded DNA molecular recognition element against the pesticide fipronil and sensitive detection in river water. Int. J. Mol. Sci. 19, 85 (2018).

    Google Scholar 

  217. Bashir, A. et al. Machine learning guided aptamer refinement and discovery. Nat. Commun. 12, 2366 (2021). This work is a comprehensive review of aptamer applications for environmental monitoring sorted into examples of water, soil and air monitoring.

    ADS  Google Scholar 

  218. Perez Tobia, J. et al. Machine learning directed aptamer search from conserved primary sequences and secondary structures. ACS Synth. Biol. 12, 186–195 (2023).

    Google Scholar 

  219. Moussa, S. et al. Diversifying design of nucleic acid aptamers using unsupervised machine learning. J. Phys. Chem. B 127, 62–68 (2023).

    Google Scholar 

  220. Iwano, N., Adachi, T., Aoki, K., Nakamura, Y. & Hamada, M. Generative aptamer discovery using RaptGen. Nat. Comput. Sci. 2, 378–386 (2022).

    Google Scholar 

  221. Lee, S. J., Cho, J., Lee, B.-H., Hwang, D. & Park, J.-W. Design and prediction of aptamers assisted by in silico methods. Biomedicines 11, 356 (2023).

    Google Scholar 

  222. Sun, D. et al. Computational tools for aptamer identification and optimization. Trends Anal. Chem. 157, 116767 (2022).

    Google Scholar 

  223. Liu, R., McConnell, E. M., Li, J. & Li, Y. Advances in functional nucleic acid based paper sensors. J. Mater. Chem. B 8, 3213–3230 (2020).

    Google Scholar 

  224. Strack, R. L., Disney, M. D. & Jaffrey, S. R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Google Scholar 

  225. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    Google Scholar 

  226. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    Google Scholar 

  227. Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D. & Trent, J. O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151–164 (2009). This paper describes one of the aptamers that have been investigated in clinical trials and widely applied for cancer applications, and is required reading for any aptamer researcher.

    Google Scholar 

  228. Kwon, H.-M. et al. An RNA aptamer that specifically binds to the glycosylated hemagglutinin of avian influenza virus and suppresses viral infection in cells. PLoS ONE 9, e97574 (2014).

    ADS  Google Scholar 

  229. Bagalkot, V., Farokhzad, O. C., Langer, R. & Jon, S. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. 45, 8149–8152 (2006).

    Google Scholar 

  230. Hicke, B. J. et al. Tumor targeting by an aptamer. J. Nucl. Med. 47, 668–678 (2006).

    Google Scholar 

  231. Chu, T. C., Twu, K. Y., Ellington, A. D. & Levy, M. Aptamer mediated siRNA delivery. Nucleic Acid. Res. 34, e73 (2006).

    Google Scholar 

  232. Esposito, C. L. et al. Multifunctional aptamer–miRNA conjugates for targeted cancer therapy. Mol. Ther. 22, 1151–1163 (2014).

    Google Scholar 

  233. Kim, D., Jeong, Y. Y. & Jon, S. A drug-loaded aptamer−gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689–3696 (2010).

    Google Scholar 

  234. Guan, B. & Zhang, X. Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int. J. Nanomed. 15, 1059–1071 (2020).

    Google Scholar 

  235. Afrasiabi, S., Pourhajibagher, M., Raoofian, R., Tabarzad, M. & Bahador, A. Therapeutic applications of nucleic acid aptamers in microbial infections. J. Biomed. Sci. 27, 6 (2020).

    Google Scholar 

  236. Zou, X., Wu, J., Gu, J., Shen, L. & Mao, L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol. 10, 1462 (2019).

    Google Scholar 

  237. Neubacher, S. & Hennig, S. RNA structure and cellular applications of fluorescent light-up aptamers. Angew. Chem. Int. Ed. 58, 1266–1279 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable feedback in the preparation of this article. M.C.D. and M.M. thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for Discovery Grant funding. M.M. also thanks the CRC programme for her Tier II Research Chair. P.M. acknowledges grant no. R35 GM139336 from the National Institute of General Medical Sciences (NIGMS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Maria C. DeRosa, Prabodhika Mallikaratchy, Erin M. McConnell, Maureen McKeague or Sarah Shigdar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Anthony Cass, X. Chris Le, Sondes Ben-Aissa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

APTANI: http://aptani.unimore.it/downloads.php

AptaSUITE: https://drivenbyentropy.github.io/

AptCompare: https://bitbucket.org/shiehk/aptcompare/src/master/

BLAST: Basic Local Alignment Search Tool: https://blast.ncbi.nlm.nih.gov/Blast.cgi

FASTAptamer: https://burkelab.missouri.edu/fastaptamer.html

Galaxy: https://usegalaxy.org/

MEMERIS: https://cs.stanford.edu/people/hillerm/Data/MEMERIS/

MEME Suite: https://meme-suite.org/meme/doc/download.html

MPBind: https://morgridge.org/research/regenerative-biology/software-resources/mpbind/

National Library of Medicine: https://www.ncbi.nlm.nih.gov/sra

PPAI: http://39.96.85.9/PPAI/

Protein Data Bank: https://www.rcsb.org/search

RaptRanker: https://github.com/hmdlab/RaptRanker

US National Library of Medicine’s online database: https://clinicaltrials.gov/

Supplementary information

Glossary

Counter-selections

Incubation of the library with a similar molecule(s) allows for increased stringency as sequences that have cross-reactivity to the similar molecule(s) are removed from the selection. Typically, counter-selections would occur after a negative selection and before a positive selection.

Enrichment

A measure of the progress of a selection, library enrichment describes the degree of convergence of the library on sequences with the desired properties.

Heterogeneous library

The pool of oligonucleotide sequences from which aptamers are selected, typically consisting of a random nucleotide core of between 20 and 60 nucleotides, flanked by fixed regions used for library amplification. In a typical systematic evolution of ligands by exponential enrichment (SELEX) experiment, the library contains 101–1015 random sequences (1–10 nmol).

Levenshtein distance

An algorithm that measures the difference between two sequences. In sequence comparison, the number of substitutions, insertions or deletions will affect the value. A common example of where this is used is for the BLAST: Basic Local Alignment Search Tool maintained by the National Institutes of Health (NIH).

Negative selections

It is important to remove sequences from the library that may bind to the selection matrix (such as magnetic beads, agarose beads and nitrocellulose paper). This is achieved by incubating the library with only the selection matrix prior to the positive selection.

Partitioning

The process by which target binding oligonucleotide sequences are separated from non-binding sequences.

Partitioning method

One of multiple methods to achieve partitioning, including, for example, affinity chromatography, nitrocellulose binding and bead-based separation.

Positive selection

The incubation of the selection library with the desired target.

Sequence space

Sequence space describes all of the possible sequences that could exist with a library having a random region of length N. For example, a library with a random region 24 nucleotides long would have 424 different unique possibilities (2.8 × 1014 sequences).

Selectivity

The ability of an aptamer to differentiate between components in a mixture.

Specificity

The ultimate selectivity, the ability of an aptamer to interact with only a single component in a mixture.

Stringency

Selection pressure used during the systematic evolution of ligands by exponential enrichment (SELEX) experiment to increase the competition between strong and weak binders, and ultimately increase aptamer suitability (affinity and specificity). Stringency can depend on several factors, including the partitioning method, target concentration, buffer composition and counter-selection rounds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeRosa, M.C., Lin, A., Mallikaratchy, P. et al. In vitro selection of aptamers and their applications. Nat Rev Methods Primers 3, 54 (2023). https://doi.org/10.1038/s43586-023-00238-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00238-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research