Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparative scale and convenient synthesis of a water-soluble, deep cavitand

Abstract

Cavitands are established tools of supramolecular chemistry and molecular recognition, and they are finding increasing application in sensing and sequestration of physiologically relevant molecules in aqueous solution. The synthesis of a water-soluble, deep cavitand is described. The route comprises six (linear) steps from commercially available precursors, and it relies on the fourfold oligomeric cyclization reaction of resorcinol with 2,3-dihydrofuran that leads to the formation of a shallow resorcinarene framework; condensation with aromatic panels, which deepens the hydrophobic binding cavity; construction of rigid urea functionalities on the upper rim; and the introduction of the water-solubilizing methylimidazolium groups on the lower rim. Late intermediates of the synthesis can be used in the preparation of congener cavitands with different properties and applications, and a sample of such a synthetic procedure is included in this protocol. Emphasis is placed on scaled-up reactions and on purification procedures that afford materials in high yield and avoid chromatographic purification. This protocol provides improvements over previously described procedures, and it enables the preparation of sizable amounts of deep cavitands: 7 g of a water-soluble cavitand can be prepared from resorcinol in 13 working days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the water-soluble, deep cavitand 6 (ref. 59).
Figure 2: Models of the dynamic conformations of 6.
Figure 3: Synthetic scheme for the preparation of the water-soluble cavitand 6.
Figure 4: Some examples of functional upper rims (top) and water-solubilizing feet (R1, bottom) of congeners of the cavitand 6 prepared in our lab as derivatives of 4.
Figure 5: Typical setup for the synthesis of the tetra(chloropropyl) octaamino cavitand 4.
Figure 6: Part of the 1H-NMR spectrum (25 °C, DMSO-d6, 400 MHz) of the tetra(chloropropyl) octaamino cavitand (4).
Figure 7: 1H-NMR stacked spectra (25 °C, D2O, 600 MHz).

Similar content being viewed by others

References

  1. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew Chem. Int. Ed. Engl. 44, 4844–4870 (2005).

    CAS  PubMed  Google Scholar 

  2. Diederich, F. & Dick, K. A new water-soluble macrocyclic host of the cyclophane type: host-guest complexation with aromatic guests in aqueous solution and acceleration of the transport of arenes through an aqueous phase. J. Am. Chem. Soc. 106, 8024–8036 (1984).

    CAS  Google Scholar 

  3. Shepodd, T.J., Petti, M.A. & Dougherty, D.A. Molecular recognition in aqueous media: donor-acceptor and ion-dipole interactions produce tight binding for highly soluble guests. J. Am. Chem. Soc. 110, 1983–1985 (1988).

    CAS  Google Scholar 

  4. Qi, T., Deschrijver, T. & Huc, I. Large-scale and chromatography-free synthesis of an octameric quinoline-based aromatic amide helical foldamer. Nat. Protoc. 8, 693–708 (2013).

    PubMed  Google Scholar 

  5. Chandramouli, N. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

    CAS  PubMed  Google Scholar 

  6. Soncini, P., Bonsignore, S., Dalcanale, E. & Ugozzoli, F. Cavitands as versatile molecular receptors. J. Org. Chem. 57, 4608–4612 (1992).

    CAS  Google Scholar 

  7. Moran, J.R. et al. Vases and kites as cavitands. J. Am. Chem. Soc. 113, 5707–5714 (1991).

    CAS  Google Scholar 

  8. Cram, D.J., Choi, H.J., Bryant, J.A. & Knobler, C.B. Host-guest complexation. 62. Solvophobic and entropic driving forces for forming velcraplexes, which are 4-fold, lock-key dimers in organic media. J. Am. Chem. Soc. 114, 7748–7765 (1992).

    CAS  Google Scholar 

  9. Pirondini, L. et al. Dynamic materials through metal-directed and solvent-driven self-assembly of cavitands. Angew Chem. Int. Ed. Engl. 42, 1384–1387 (2003).

    CAS  PubMed  Google Scholar 

  10. Pochorovski, I. et al. Quinone-based, redox-active resorcin[4]arene cavitands. Angew Chem. Int. Ed. Engl. 51, 262–266 (2012).

    CAS  PubMed  Google Scholar 

  11. Pochorovski, I. et al. Redox-switchable resorcin[4]arene cavitands: molecular grippers. J. Am. Chem. Soc. 134, 14702–14705 (2012).

    CAS  PubMed  Google Scholar 

  12. Ajami, D. & Rebek, J. Jr. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013).

    CAS  PubMed  Google Scholar 

  13. Gottschalk, T., Jaun, B. & Diederich, F. Container molecules with portals: reversibly switchable cycloalkane complexation. Angew. Chem. Int. Ed. Engl. 46, 260–264 (2007).

    CAS  PubMed  Google Scholar 

  14. Gil-Ramirez, G., Benet-Buchholz, J., Escudero-Adan, E.C. & Ballester, P. Solid-state self-assembly of a calix[4]pyrrole-resorcinarene hybrid into a hexameric cage. J. Am. Chem. Soc. 129, 3820–3821 (2007).

    CAS  PubMed  Google Scholar 

  15. Pinalli, R. & Dalcanale, E. Supramolecular sensing with phosphonate cavitands. Acc. Chem. Res. 46, 399–411 (2013).

    CAS  PubMed  Google Scholar 

  16. Xi, H. & Gibb, C.L.D. Deep-cavity cavitands: synthesis and solid state structure of host molecules possessing large bowl-shaped cavities. Chem. Commun. 16, 1743–1744 (1998).

    Google Scholar 

  17. Xi, H., Gibb, C.L.D. & Gibb, B.C. Functionalized Deep-Cavity Cavitands. J. Org. Chem. 64, 9286–9288 (1999).

    CAS  Google Scholar 

  18. Kulasekharan, R., Choudhury, R., Prabhakar, R. & Ramamurthy, V. Restricted rotation due to the lack of free space within a capsule translates into product selectivity: photochemistry of cyclohexyl phenyl ketones within a water-soluble organic capsule. Chem. Commun. (Camb.) 47, 2841–2843 (2011).

    CAS  Google Scholar 

  19. Liu, S., Gan, H., Hermann, A.T., Rick, S.W. & Gibb, B.C. Kinetic resolution of constitutional isomers controlled by selective protection inside a supramolecular nanocapsule. Nat. Chem. 2, 847–852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Biros, S.M. & Rebek, J. Jr. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev. 36, 93–104 (2007).

    CAS  PubMed  Google Scholar 

  21. Haino, T., Rudkevich, D.M., Shivanyuk, A., Rissanen, K. & Rebek, J. Jr. Induced-fit molecular recognition with water-soluble cavitands. Chemistry 6, 3797–3805 (2000).

    CAS  PubMed  Google Scholar 

  22. Ryan, D.A. & Rebek, J. Jr. A carbohydrate-conjugated deep cavitand permits observation of caviplexes in human serum. J. Am. Chem. Soc. 133, 19653–19655 (2011).

    CAS  PubMed  Google Scholar 

  23. Javor, S. & Rebek, J. Jr. Activation of a water-soluble resorcinarene cavitand at the water-phosphocholine micelle interface. J. Am. Chem. Soc. 133, 17473–17478 (2011).

    CAS  PubMed  Google Scholar 

  24. Kubitschke, J., Javor, S. & Rebek, J. Jr. Deep cavitand vesicles—multicompartmental hosts. Chem. Commun. (Camb.) 48, 9251–9253 (2012).

    CAS  Google Scholar 

  25. Zhang, K.D., Ajami, D. & Rebek, J. Hydrogen-bonded capsules in water. J. Am. Chem. Soc. 135, 18064–18066 (2013).

    CAS  PubMed  Google Scholar 

  26. Zhang, K.D., Ajami, D., Gavette, J.V. & Rebek, J. Jr. Alkyl groups fold to fit within a water-soluble cavitand. J. Am. Chem. Soc. 136, 5264–5266 (2014).

    CAS  PubMed  Google Scholar 

  27. Jordan, J.H. & Gibb, B.C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44, 547–585 (2015).

    CAS  PubMed  Google Scholar 

  28. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    CAS  PubMed  Google Scholar 

  29. Biavardi, E. et al. Exclusive recognition of sarcosine in water and urine by a cavitand-functionalized silicon surface. Proc. Natl. Acad. Sci. USA 109, 2263–2268 (2012).

    CAS  PubMed  Google Scholar 

  30. Ryan, D.A. & Rebek, J. Jr. 1H NMR detection of small molecules in human urine with a deep cavitand synthetic receptor. Analyst 138, 1008–1010 (2013).

    CAS  PubMed  Google Scholar 

  31. Liu, Y. et al. Protein recognition by a self-assembled deep cavitand monolayer on a gold substrate. Langmuir 28, 1391–1398 (2012).

    CAS  PubMed  Google Scholar 

  32. Baldridge, A., Samanta, S.R., Jayaraj, N., Ramamurthy, V. & Tolbert, L.M. Steric and electronic effects in capsule-confined green fluorescent protein chromophores. J. Am. Chem. Soc. 133, 712–715 (2011).

    CAS  PubMed  Google Scholar 

  33. Zhang, K.D., Ajami, D., Gavette, J.V. & Rebek, J. Jr. Complexation of alkyl groups and ghrelin in a deep, water-soluble cavitand. Chem. Commun. (Camb.) 50, 4895–4897 (2014).

    CAS  Google Scholar 

  34. Mosca, S., Ajami, D. & Rebek, J. Jr. Recognition and sequestration of omega-fatty acids by a cavitand receptor. Proc. Natl. Acad. Sci. USA 112, 11181–11186 (2015).

    CAS  PubMed  Google Scholar 

  35. Ajami, D. & Rebek, J. Jr. Adaptations of guest and host in expanded self-assembled capsules. Proc. Natl. Acad. Sci. USA 104, 16000–16003 (2007).

    CAS  PubMed  Google Scholar 

  36. Park, J. et al. Hydrocarbon binding by proteins: structures of protein binding sites for C10 linear alkanes or long-chain alkyl and alkenyl groups. J. Org. Chem. 80, 997–1005 (2015).

    CAS  PubMed  Google Scholar 

  37. Ferguson, S.B. et al. Strong enthalpically driven complexation of neutral benzene guests in aqueous solution. J. Org. Chem. 53, 5593–5595 (1988).

    CAS  Google Scholar 

  38. Mecozzi, S. & Rebek, J.J. The 55 % solution: a formula for molecular recognition in the liquid state. Chem.- Eur. J. 4, 1016–1022 (1998).

    CAS  Google Scholar 

  39. Kaanumalle, L.S., Gibb, C.L., Gibb, B.C. & Ramamurthy, V. Controlling photochemistry with distinct hydrophobic nanoenvironments. J. Am. Chem. Soc. 126, 14366–14367 (2004).

    CAS  PubMed  Google Scholar 

  40. Sundaresan, A.K. & Ramamurthy, V. Making a difference on excited-state chemistry by controlling free space within a nanocapsule: photochemistry of 1-(4-alkylphenyl)-3-phenylpropan-2-ones. Org. Lett. 9, 3575–3578 (2007).

    CAS  PubMed  Google Scholar 

  41. Sundaresan, A.K. & Ramamurthy, V. Consequences of controlling free space within a reaction cavity with a remote alkyl group: photochemistry of para-alkyl dibenzyl ketones within an organic capsule in water. Photochem. Photobiol. Sci. 7, 1555 (2008).

    CAS  Google Scholar 

  42. Jagadesan, P., Mondal, B., Parthasarathy, A., Rao, V.J. & Ramamurthy, V. Photochemical reaction containers as energy and electron-transfer agents. Org. Lett. 15, 1326–1329 (2013).

    CAS  PubMed  Google Scholar 

  43. Hooley, R.J., Biros, S.M. & Rebek, J. Jr. A deep, water-soluble cavitand acts as a phase-transfer catalyst for hydrophobic species. Angew. Chem. Int. Ed. Engl. 45, 3517–3519 (2006).

    CAS  PubMed  Google Scholar 

  44. Liu, S., Whisenhunt-Ioup, S.E., Gibb, C.L. & Gibb, B.C. An improved synthesis of 'octa-acid' deep-cavity cavitand. Supramol. Chem. 23, 480–485 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Restorp, P. & Rebek, J. Jr. Reaction of isonitriles with carboxylic acids in a cavitand: observation of elusive isoimide intermediates. J. Am. Chem. Soc. 130, 11850–11851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oshovsky, G.V., Reinhoudt, D.N. & Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. Engl. 46, 2366–2393 (2007).

    CAS  PubMed  Google Scholar 

  47. Gibb, C.L. & Gibb, B.C. Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly. J. Am. Chem. Soc. 126, 11408–11409 (2004).

    CAS  PubMed  Google Scholar 

  48. Gibb, C.L. & Gibb, B.C. Straight-chain alkanes template the assembly of water-soluble nano-capsules. Chem Commun (Camb.) 16, 1635–1637 (2007).

    Google Scholar 

  49. Sun, H., Gibb, C.L.D. & Gibb, B.C. Calorimetric analysis of the 1:1 complexes formed between a water-soluble deep-cavity cavitand, and cyclic and acyclic carboxylic acids. Supramol. Chem. 20, 141–147 (2008).

    CAS  Google Scholar 

  50. Gan, H., Benjamin, C.J. & Gibb, B.C. Nonmonotonic assembly of a deep-cavity cavitand. J. Am. Chem. Soc. 133, 4770–4773 (2011).

    CAS  PubMed  Google Scholar 

  51. Gan, H. & Gibb, B.C. Guest-mediated switching of the assembly state of a water-soluble deep-cavity cavitand. Chem. Commun. (Camb.) 49, 1395–1397 (2013).

    CAS  Google Scholar 

  52. Giles, M.D., Liu, S., Emanuel, R.L., Gibb, B.C. & Grayson, S.M. Dendronized supramolecular nanocapsules: pH independent, water-soluble, deep-cavity cavitands assemble via the hydrophobic effect. J. Am. Chem. Soc. 130, 14430–14431 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Giles, M.D., Liu, S., Emanuel, R., Gibb, B. & Grayson, S. Divergent dendronization of deep-cavity cavitands to tune host solubility. Isr. J. Chem. 49, 31–40 (2009).

    CAS  Google Scholar 

  54. Grayson, S.M. & Gibb, B.C. Dendronized cavitands: a step towards a synthetic viral capsid? Soft Matter 6, 1377 (2010).

    CAS  Google Scholar 

  55. Kulasekharan, R. & Ramamurthy, V. New water-soluble organic capsules are effective in controlling excited-state processes of guest molecules. Org. Lett. 13, 5092–5095 (2011).

    CAS  PubMed  Google Scholar 

  56. Ishida, Y., Kulasekharan, R., Shimada, T., Takagi, S. & Ramamurthy, V. Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. Langmuir 29, 1748–1753 (2013).

    CAS  PubMed  Google Scholar 

  57. Ishida, Y., Kulasekharan, R., Shimada, T., Ramamurthy, V. & Takagi, S. Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J. Phys. Chem. C 118, 10198–10203 (2014).

    CAS  Google Scholar 

  58. Ajami, D., Liu, L. & Rebek, J. Jr. Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015).

    CAS  PubMed  Google Scholar 

  59. Mosca, S., Yu, Y., Gavette, J.V., Zhang, K.D. & Rebek, J. Jr. A deep cavitand templates lactam formation in water. J. Am. Chem. Soc. 137, 14582–14585 (2015).

    CAS  PubMed  Google Scholar 

  60. Haino, T., Rudkevich, D.M. & Rebek, J. Kinetically stable Caviplexes in water. J. Am. Chem. Soc. 121, 11253–11254 (1999).

    CAS  Google Scholar 

  61. Hof, F., Trembleau, L., Ullrich, E.C. & Rebek, J. Jr. Acetylcholine recognition by a deep, biomimetic pocket. Angew. Chem. Int. Ed. Engl. 42, 3150–3153 (2003).

    CAS  PubMed  Google Scholar 

  62. Hooley, R.J., Van Anda, H.J. & Rebek, J. Jr. Cavitands with revolving doors regulate binding selectivities and rates in water. J. Am. Chem. Soc. 128, 3894–3895 (2006).

    CAS  PubMed  Google Scholar 

  63. Haas, C.H., Biros, S.M. & Rebek, J. Jr. Binding properties of cavitands in aqueous solution—the influence of charge on guest selectivity. Chem. Commun. (Camb.) 48, 6044–6045 (2005).

    Google Scholar 

  64. Hooley, R.J., Van Anda, H.J. & Rebek, J. Jr. Extraction of hydrophobic species into a water-soluble synthetic receptor. J. Am. Chem. Soc. 129, 13464–13473 (2007).

    CAS  PubMed  Google Scholar 

  65. Trembleau, L. & Rebek, J. Jr. Helical conformation of alkanes in a hydrophobic cavitand. Science 301, 1219–1220 (2003).

    CAS  PubMed  Google Scholar 

  66. Butterfield, S.M. & Rebek, J. Jr. A synthetic mimic of protein inner space: buried polar interactions in a deep water-soluble host. J. Am. Chem. Soc. 128, 15366–15367 (2006).

    CAS  PubMed  Google Scholar 

  67. Tucci, F.C., Rudkevich, D.M. & Rebek, J.J. Velcrands with snaps and their conformational control. Chem.- Eur. J. 6, 1007–1016 (2000).

    CAS  PubMed  Google Scholar 

  68. Gavette, J.V., Zhang, K.-D., Ajami, D. & Rebek, J. Folded alkyl chains in water-soluble capsules and cavitands. Org. Biomol. Chem. 12, 6561 (2014).

    CAS  PubMed  Google Scholar 

  69. Ebbing, M.H., Villa, M.J., Valpuesta, J.M., Prados, P. & de Mendoza, J. Resorcinarenes with 2-benzimidazolone bridges: self-aggregation, self-assembled dimeric capsules, and guest encapsulation. Proc. Natl. Acad. Sci. USA 99, 4962–4966 (2002).

    CAS  PubMed  Google Scholar 

  70. Ayhan, M.M. et al. EPR studies of the binding properties, guest dynamics, and inner-space dimensions of a water-soluble resorcinarene capsule. Chemistry 21, 16404–16410 (2015).

    CAS  PubMed  Google Scholar 

  71. Asadi, A., Ajami, D. & Rebek, J. Jr. Bent alkanes in a new thiourea-containing capsule. J. Am. Chem. Soc. 133, 10682–10684 (2011).

    CAS  PubMed  Google Scholar 

  72. Menozzi, E., Onagi, H., Rheingold, A.L. & Rebek, J. Extended cavitands of nanoscale dimensions. Eur. J. Org. Chem. 2005, 3633–3636 (2005).

    Google Scholar 

  73. Yoshida, Y., Sakakura, Y., Aso, N., Okada, S. & Tanabe, Y. Practical and efficient methods for sulfonylation of alcohols using Ts(Ms)Cl/Et3N and catalytic Me3H·HCl as combined base: promising alternative to traditional pyridine. Tetrahedron 55, 2183–2192 (1999).

    CAS  Google Scholar 

  74. Soberats, B., Sanna, E., Martorell, G., Rotger, C. & Costa, A. Programmed enzyme-mimic hydrolysis of a choline carbonate by a metal-free 2-aminobenzimidazole-based cavitand. Org. Lett. 16, 840–843 (2014).

    CAS  PubMed  Google Scholar 

  75. Mann, E. & Rebek, J. Deepened chiral cavitands. Tetrahedron 64, 8484–8487 (2008).

    CAS  Google Scholar 

  76. Ramasamy, E., Jayaraj, N., Porel, M. & Ramamurthy, V. Excited state chemistry of capsular assemblies in aqueous solution and on silica surfaces. Langmuir 28, 10–16 (2012).

    CAS  PubMed  Google Scholar 

  77. Samanta, S.R. et al. Gold nanoparticles functionalized with deep-cavity cavitands: synthesis, characterization, and photophysical studies. Langmuir 28, 11920–11928 (2012).

    CAS  PubMed  Google Scholar 

  78. Mondal, B. et al. Synthesis, characterization, guest inclusion, and photophysical studies of gold nanoparticles stabilized with carboxylic acid groups of organic cavitands. Langmuir 29, 12703–12709 (2013).

    CAS  PubMed  Google Scholar 

  79. Gibb, B.C., Chapman, R.G. & Sherman, J.C. Synthesis of hydroxyl-footed cavitands. J. Org. Chem. 61, 1505–1509 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science foundation (CHE 1506266) and a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (grant agreement no. PIOF-GA-2013-627403, postdoctoral fellowship to S.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and Y.Y. contributed equally to this work. S.M. conceived and optimized the protocol; Y.Y. carried out experiments; and S.M. and J.R. wrote the manuscript.

Corresponding author

Correspondence to Julius Rebek Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 1H NMR spectrum for compound 1

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 1. The material may contain traces of residual THF, which does not interfere with the next step.

Supplementary Figure 2 1H NMR spectrum for compound 2

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 2. The characteristic methine peak and the corresponding atoms are marked with the green arrows. The material may contain traces of residual Et2O, which does not interfere with the next step.

Supplementary Figure 3 1H NMR spectrum for compound 3

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 3. The characteristic methine peak and the corresponding atoms are marked with the green arrows. The material may contain traces of residual Et2O, which does not interfere with the next step.

Supplementary Figure 4 1H NMR spectrum for compound 4

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 4. The characteristic methine peak and the corresponding atoms are marked with the green arrows. The material usually contains residual solvents and salts that result in extra weighing but do not interfere with the next step.

Supplementary Figure 5 1H NMR spectrum for compound 5

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 5. The characteristic methine peak and the corresponding atoms are marked with the green arrows. The material may contain traces of residual solvents (AcOEt and ACN), which do not interfere with the next step.

Supplementary Figure 6 1H NMR spectrum for compound 6

1H-NMR spectrum (25 °C, DMSO‑d6, 600 MHz) of the compound 6.23 The characteristic methine peak and the corresponding atoms are marked with the green arrows. The solid usually contains residual acetone (~ 3% w/w by NMR peak integration) that resists removal under high vacuum, as also observed with the previously reported analogue of 6 with pyridinium feet.

Supplementary Figure 7 1H NMR spectrum for compound 6 lyophilized

1H-NMR spectrum (25 °C, DMSO-d6, 600 MHz) of the compound 6 after lyophilization. The characteristic methine peak and the corresponding atoms are marked with the green arrows. Lyophilzation efficiently removes acetone traces.

Supplementary Figure 8 1H NMR spectrum for compound 14

1H-NMR spectrum (25 °C, 5% (vol/vol) D2O in acetone-d6, 600 MHz) of the compound 14.32 The characteristic methine peak and the corresponding atoms are marked with the green arrows. The material may contain traces of residual solvents (AcOEt and ACN), which do not interfere with the next step.

Supplementary Figure 9 1H NMR spectrum for compound 15

1H-NMR spectrum (298 K, 10% (vol/vol) D2O in DMSO-d6, 600 MHz) of the compound 15.32 The characteristic methine peak and the corresponding atoms are marked with the green arrows.

Supplementary Figure 10 1H NMR spectrum for compound 15 in 5% DMSO aqueous solution

1H-NMR spectrum (298 K, 5% (vol/vol) DMSO-d6 in D2O, 600 MHz) of cavitand 15 (1 mM).32 15 features a kinetically stable (on the NMR time scale) vase conformation in aqueous solutions and broadened aryl C−H signals characteristic of kite form (between 6.0 and 6.5 ppm) are not observed either in absence of hydrophobic guests. The characteristic methine peak and the corresponding atoms are marked with the green arrows.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosca, S., Yu, Y. & Rebek, J. Preparative scale and convenient synthesis of a water-soluble, deep cavitand. Nat Protoc 11, 1371–1387 (2016). https://doi.org/10.1038/nprot.2016.078

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing