Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA

An Addendum to this article was published on 01 February 2014

This article has been updated

Abstract

Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements in eukaryotic genomes. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (formaldehyde-assisted isolation of regulatory elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are cross-linked briefly with formaldehyde, lysed and sonicated. Sheared chromatin is subjected to phenol/chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays or next-generation sequencing. Regulatory elements enriched by FAIRE have high concordance with those identified by nuclease hypersensitivity or chromatin immunoprecipitation (ChIP), and the entire procedure can be completed in 3 d. FAIRE has low technical variability, which allows its usage in large-scale studies of chromatin from normal or diseased tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example timeline for FAIRE protocol.
Figure 2: Representative gel image showing varying degrees of sonication.
Figure 3: Expected results from FAIRE-seq experiments.

Similar content being viewed by others

Change history

  • 13 January 2014

     The authors have added some new information regarding the types of species and cell types in which formaldehyde-assisted isolation of regulatory elements (FAIRE) has been successfully performed, according to recently published reports. This information has been appended to the PDF version of the article.

References

  1. Boyle, A.P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    Article  CAS  Google Scholar 

  2. Crawford, G.E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    Article  CAS  Google Scholar 

  3. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  Google Scholar 

  4. Song, L. & Crawford, G.E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010 doi:10.1101/pdb.prot5384 (2010).

  5. Keene, M.A., Corces, V., Lowenhaupt, K. & Elgin, S.C. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc. Natl. Acad. Sci. USA 78, 143–146 (1981).

    Article  CAS  Google Scholar 

  6. McGhee, J.D., Wood, W.I., Dolan, M., Engel, J.D. & Felsenfeld, G. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell 27 (1, Part 2), 45–55 (1981).

    Article  CAS  Google Scholar 

  7. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  8. Gross, D.S. & Garrard, W.T. Nuclease hypersensitive sites in chromatin. Ann. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  Google Scholar 

  9. Stalder, J. et al. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell 20, 451–460 (1980).

    Article  CAS  Google Scholar 

  10. Hogan, G.J., Lee, C.-K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    Article  Google Scholar 

  11. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  Google Scholar 

  12. Giresi, P.G. & Lieb, J.D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48, 233–239 (2009).

    Article  CAS  Google Scholar 

  13. Gaulton, K.J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).

    Article  CAS  Google Scholar 

  14. Nagy, P.L., Cleary, M.L., Brown, P.O. &, Lieb J.D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA 100, 6364–6369 (2003).

    Article  CAS  Google Scholar 

  15. Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011).

    Article  CAS  Google Scholar 

  16. Ponts, N. et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 20, 228–238 (2010).

    Article  CAS  Google Scholar 

  17. Louwers, M. et al. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21, 832–842 (2009).

    Article  CAS  Google Scholar 

  18. Langmead, B., Trapnell, C., Pop, M. &, Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  19. Rashid, N., Giresi, P.G., Ibrahim, J.G. & Lieb J.D. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol. 12, R67 (2011).

    Article  CAS  Google Scholar 

  20. ENCODE Project Consortium. et al. A user's guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  21. Birney, E., Lieb, J.D., Furey, T.S., Crawford, G.E. & Iyer, V.R. Allele-specific and heritable chromatin signatures in humans. Hum. Mol. Genet. 19, R204 (2010).

    Article  CAS  Google Scholar 

  22. Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D. & Carroll, J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet. 43, 27–33 (2011).

    Article  CAS  Google Scholar 

  23. Eeckhoute, J. et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res. 19, 372–380 (2009).

    Article  CAS  Google Scholar 

  24. Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  Google Scholar 

  25. Li, Q, Brown, J.B., Huang, H. & Bickel, P. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Article  Google Scholar 

  26. Lassmann, T., Hayashizaki, Y. & Daub, C.O. TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25, 2839–2840 (2009).

    Article  CAS  Google Scholar 

  27. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  29. Boyle, A.P., Guinney, J., Crawford, G.E. & Furey, T.S. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24, 2537–2538 (2008).

    Article  CAS  Google Scholar 

  30. Haring, M. et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11 (2007).

    Article  Google Scholar 

  31. Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006).

    Article  CAS  Google Scholar 

  32. Ren, B. & Dynlacht, B.D. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol. 376, 304–315 (2004).

    Article  CAS  Google Scholar 

  33. Oberley, M.J., Tsao, J., Yau, P. & Farnham, P.J. High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol. 376, 315–334 (2004).

    Article  CAS  Google Scholar 

  34. Oberley, M.J. & Farnham, P.J. Probing chromatin immunoprecipitates with CpG-island microarrays to identify genomic sites occupied by DNA-binding proteins. Methods Enzymol. 371, 577–596 (2003).

    Article  CAS  Google Scholar 

  35. Lieb, J.D. Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. Methods Mol. Biol. 224, 99–109 (2003).

    CAS  PubMed  Google Scholar 

  36. Ciccone, D.N., Morshead, K.B. & Oettinger, M.A. Chromatin immunoprecipitation in the analysis of large chromatin domains across murine antigen receptor loci. Methods Enzymol. 376, 334–348 (2004).

    Article  CAS  Google Scholar 

  37. Chaya, D. & Zaret, K.S. Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol. 376, 361–372 (2004).

    Article  CAS  Google Scholar 

  38. Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360 (2004).

    Article  CAS  Google Scholar 

  39. Bernstein, B.E., Humphrey, E.L., Liu, C.L. & Schreiber, S.L. The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol. 376, 349–360 (2004).

    Article  CAS  Google Scholar 

  40. Bannister, A.J. & Kouzarides, T. Histone methylation: recognizing the methyl mark. Methods Enzymol. 376, 269–288 (2004).

    Article  CAS  Google Scholar 

  41. Nammo, T., Rodriguez-Segui, S.A. & Ferrer, J. Mapping open chromatin with formaldehyde-assisted isolation of regulatory elements. Methods Mol. Biol. 791 (1940-6029 (Electronic)), 287–296 (2011).

    Article  CAS  Google Scholar 

  42. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  43. Buck, M.J., Nobel, A.B. & Lieb, J.D. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 6, R97 (2005).

    Article  Google Scholar 

  44. Sun, W., Buck, M., Patel, M. & Davis, I.J. Improved ChIP-chip analysis by a mixture model approach. BMC Bioinformatics 10, 173 (2009).

    Article  Google Scholar 

  45. Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  Google Scholar 

  46. Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39 (Database issue): D876–D882 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge members of the Lieb and Davis labs for their constructive feedback. Support for this work was provided by ENCODE grant U54HG004563 from the National Human Genome Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration between all authors. P.G.G. and J.M.S. designed and improved the method. J.M.S., P.G.G., I.J.D. and J.D.L. wrote the manuscript. All authors have contributed to, reviewed and approved of the manuscript.

Corresponding author

Correspondence to Jason D Lieb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, J., Giresi, P., Davis, I. et al. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7, 256–267 (2012). https://doi.org/10.1038/nprot.2011.444

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.444

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing