Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

Abstract

A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing1,2, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular)3,4,5,6 and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200–300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2−x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach1,2,7. We measure an oxygen uptake rate as high as 14 mmol O2 g−1 min−1, 2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2−x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen8,9,10 produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images and photographs of nanotube arrays.
Figure 2: Oxygen uptake versus time.
Figure 3: Fabrication procedure and parameters.
Figure 4: Cycling between uptake and reduction.
Figure 5: Change in TiO2 resistivity accompanying O2 uptake.

Similar content being viewed by others

References

  1. Jeen, H. et al. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nature Mater. 12, 1057–1063 (2013).

    Article  CAS  Google Scholar 

  2. Hervieu, M. et al. Oxygen storage capacity and structural flexibility of LuFe2O4+x (0 ≤ x ≤ 0.5). Nature Mater. 13, 74–80 (2014).

    Article  CAS  Google Scholar 

  3. Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  CAS  Google Scholar 

  4. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  5. McEvoy, A. J. Materials for high-temperature oxygen reduction in solid oxide fuel cells. J. Mater. Sci. 36, 1087–1091 (2001).

    Article  CAS  Google Scholar 

  6. Setvín, M. et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341, 988–991 (2013).

    Article  Google Scholar 

  7. Göpel, W., Rocker, G. & Feierabend, R. Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2 . Phys. Rev. B 28, 3427 (1983).

    Article  Google Scholar 

  8. Hollister, A. G., Gorai, P. & Seebauer, E. G. Surface-based manipulation of point defects in rutile TiO2 . Appl. Phys. Lett. 102, 231601 (2013).

    Article  Google Scholar 

  9. Gorai, P., Hollister, A. G. & Seebauer, E. G. Measurement of defect-mediated oxygen self-diffusion in metal oxides. ECS J. Solid State Sci. Technol. 1, Q21–Q24 (2012).

    Article  CAS  Google Scholar 

  10. Seebauer, E. G. et al. Control of defect concentrations within a semiconductor through adsorption. Phys. Rev. Lett. 97, 055503 (2006).

    Article  Google Scholar 

  11. Wahlström, E. et al. Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface. Science 303, 511–513 (2004).

    Article  Google Scholar 

  12. Schaub, R. et al. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299, 377–379 (2003).

    Article  CAS  Google Scholar 

  13. Pacchioni, G. Oxygen vacancy: the invisible agent on oxide surfaces. ChemPhysChem 4, 1041–1047 (2003).

    Article  CAS  Google Scholar 

  14. Gopal, C. B. & Haile, S. M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria. J. Mater. Chem. A 2, 2405–2417 (2014).

    Article  CAS  Google Scholar 

  15. Richter, C. & Schmuttenmaer, C. A. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nature Nanotech. 5, 769–772 (2010).

    Article  CAS  Google Scholar 

  16. Varghese, O. K., Paulose, M. & Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotech. 4, 592–597 (2009).

    Article  CAS  Google Scholar 

  17. Roy, P., Berger, S. & Schmuki, P. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011).

    Article  CAS  Google Scholar 

  18. Berger, S., Ghicov, A., Nah, Y. C. & Schmuki, P. Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices. Langmuir 25, 4841–4844 (2009).

    Article  CAS  Google Scholar 

  19. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  20. Serpone, N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006).

    Article  CAS  Google Scholar 

  21. Teng, F. et al. Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B 148–149, 339–343 (2014).

    Article  Google Scholar 

  22. Miltz, J. & Perry, M. Evaluation of the performance of iron-based oxygen scavengers, with comments on their optimal applications. Packag. Technol. Sci. 18, 21–27 (2005).

    Article  CAS  Google Scholar 

  23. Tewari, G., Jayas, D. S., Jeremiah, L. E. & Holley, R. A. Absorption kinetics of oxygen scavengers. Int. J. Food Sci. Technol. 37, 209–217 (2002).

    Article  CAS  Google Scholar 

  24. He, Y., Dulub, O., Cheng, H., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2 (101). Phys. Rev. Lett. 102, 106105 (2009).

    Article  Google Scholar 

  25. Wendt, S. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008).

    Article  CAS  Google Scholar 

  26. Iguchi, E. & Yajima, K. Diffusion of oxygen vacancies in reduced rutile (TiO2). J. Phys. Soc. Jpn 32, 1415–1421 (1972).

    Article  CAS  Google Scholar 

  27. Roh, B. Defect Properties of Anodic Oxide Films on Titanium and Impact of Oxygen Vacancy on Oxygen Electrode Reactions PhD thesis, Pennsylvania State Univ. (2007).

    Google Scholar 

  28. Cheng, H. & Selloni, A. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). J. Chem. Phys. 131, 054703 (2009).

    Article  Google Scholar 

  29. Lu, H. F. et al. Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19, 405504 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kate Gleason Fund.

Author information

Authors and Affiliations

Authors

Contributions

T.C., G.T., C.R. and C.D. conceived and designed the experiments. T.C. and G.T. performed the experiments. C.R., S.W. and T.C. analysed the data. C.D. contributed materials/measurement tools. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Christiaan Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Close, T., Tulsyan, G., Diaz, C. et al. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes. Nature Nanotech 10, 418–422 (2015). https://doi.org/10.1038/nnano.2015.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing