Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing active oxides for a durable oxygen evolution reaction

Abstract

The oxygen evolution reaction (OER) balances the hydrogen evolution reaction when splitting water into green hydrogen and oxygen with renewable electricity. Oxygen evolution occurs at potentials at which the pre-catalysts undergo transformations into complex and disordered OER-active oxides. Traditional synthetic methods and material compositions have resulted in an enormous variety of OER pre-catalysts, yet the most active of them are forced into a few prevailing oxyhydroxide or amorphous oxide phases under operation. As a result, practically relevant catalyst activity and stability have remained unchanged for decades. Here we discuss the need to develop new theory in synergy with operando electrochemical and spectroscopic characterization to take advantage of the effects of an applied electrochemical potential gradient on the chemical composition and atomic surface structure, the hydroxide ion intercalation and other interfacial ionics. Additionally, we highlight new synthesis methods and material compositions that might translate control over the pre-catalyst into control over the active oxide phase, as well as new methods of modifying active oxides during operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of oxide surfaces before, during and after the OER.
Fig. 2: Activity and stability limitations for OER catalysts.
Fig. 3: Low-temperature water electrolysis technologies.
Fig. 4: Operando characterization of IrOx nanoparticles displaying various degrees of deprotonated µ1-O and µ2-O species at ~529 eV that are thought to be important for high OER activity.
Fig. 5: Operando SXRD of the disordered CoOOH skin layer that indicates a spatially extended OER-active interphase.
Fig. 6: Operando characterization of CoOx(OH)y nanoparticles showing a size-dependent oxidation leading to near-surface Co–O bond contraction due to the accumulation of oxidative charge and deprotonation.
Fig. 7: New synthesis approaches for OER electrocatalysts.

Similar content being viewed by others

References

  1. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  PubMed  Google Scholar 

  2. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Google Scholar 

  3. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Danilovic, N. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    CAS  PubMed  Google Scholar 

  5. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    CAS  Google Scholar 

  6. Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

    CAS  PubMed  Google Scholar 

  7. Kasian, O., Grote, J., Geiger, S., Cherevko, S. & Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem. Int. Ed. 57, 2488–2491 (2018).

    CAS  Google Scholar 

  8. Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    Google Scholar 

  9. Kötz, R., Stucki, S., Scherson, D. & Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. 172, 211–219 (1984).

    Google Scholar 

  10. Pfeifer, V. et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8, 2143–2149 (2017).

    CAS  PubMed  Google Scholar 

  11. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017).

    CAS  Google Scholar 

  12. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    CAS  PubMed  Google Scholar 

  13. Mom, R. V. et al. Operando structure-activity-stability relationship of iridium oxides during the oxygen evolution reaction. ACS Catal. 12, 5174–5184 (2022).

    CAS  Google Scholar 

  14. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  15. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    CAS  Google Scholar 

  16. Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  18. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Google Scholar 

  19. Suntivich, J. et al. A perovskite oxide optimized for molecular orbital principles. Science 334, 2010–2012 (2011).

    Google Scholar 

  20. Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    CAS  PubMed  Google Scholar 

  21. Tung, C. W. et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015).

    CAS  PubMed  Google Scholar 

  22. Reikowski, F. et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. ACS Catal. 9, 3811–3821 (2019).

    CAS  Google Scholar 

  23. Wiegmann, T. et al. Operando identification of the reversible skin layer on Co3O4 as a three-dimensional reaction zone for oxygen evolution. ACS Catal. 12, 3256–3268 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    CAS  PubMed  Google Scholar 

  25. Bernt, M. & Gasteiger, H. A. Influence of ionomer content in IrO2 /TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 163, F3179–F3189 (2016).

    CAS  Google Scholar 

  26. Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164, F387–F399 (2017).

    CAS  Google Scholar 

  27. Minke, C., Suermann, M., Bensmann, B. & Hanke-Rauschenbach, R. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int. J. Hydrogen Energy 46, 23581–23590 (2021).

    CAS  Google Scholar 

  28. Wilburn, D. R. & Bleiwas, D. I. Platinum-group Metals: World Supply and Demand. US Geological Survey Open-File Report 135–148 (US Geological Survey, 2004).

  29. Hegge, F. et al. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers. ACS Appl. Energy Mater. 3, 8276–8284 (2020).

    CAS  Google Scholar 

  30. Taie, Z. et al. Pathway to complete energy sector decarbonization with available iridium resources using ultralow loaded water electrolyzers. ACS Appl. Mater. Interfaces 12, 52701–52712 (2020).

    CAS  PubMed  Google Scholar 

  31. Du, N. et al. Anion-exchange membrane water electrolyzers. Chem. Rev. 122, 11830–11895 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hugar, K. M., Kostalik, H. A. & Coates, G. W. Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships. J. Am. Chem. Soc. 137, 8730–8737 (2015).

    CAS  PubMed  Google Scholar 

  33. Peng, X. et al. Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat. Commun. 11, 3561 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ul Hassan, N. et al. Achieving high‐performance and 2,000 h stability in anion exchange membrane fuel cells by manipulating ionomer properties and electrode optimization. Adv. Energy Mater. 10, 2001986 (2020).

    CAS  Google Scholar 

  35. Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    CAS  Google Scholar 

  36. Lindquist, G. A. et al. Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation. ACS Appl. Mater. Interfaces 13, 51917–51924 (2021).

    CAS  Google Scholar 

  37. Krivina, R. A. et al. Anode catalysts in anion‐exchange‐membrane electrolysis without supporting electrolyte: conductivity, dynamics and ionomer degradation. Adv. Mater. 34, 2203033 (2022).

    CAS  Google Scholar 

  38. Diesendruck, C. E. & Dekel, D. R. Water—a key parameter in the stability of anion exchange membrane fuel cells. Curr. Opin. Electrochem. 9, 173–178 (2018).

    CAS  Google Scholar 

  39. Dekel, D. R. et al. Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem. Mater. 29, 4425–4431 (2017).

    CAS  Google Scholar 

  40. Yang, Y. et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117–6321 (2022).

    CAS  PubMed  Google Scholar 

  41. Anderson, G. C., Pivovar, B. S. & Alia, S. M. Establishing performance baselines for the oxygen evolution reaction in alkaline electrolytes. J. Electrochem. Soc. 167, 044503 (2020).

    CAS  Google Scholar 

  42. Mayerhöfer, B. et al. Electrochemical- and mechanical stability of catalyst layers in anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 47, 4304–4314 (2022).

    Google Scholar 

  43. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    CAS  Google Scholar 

  44. Dekel, D. R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018).

    CAS  Google Scholar 

  45. Gottesfeld, S. et al. Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018).

    CAS  Google Scholar 

  46. Exner, K. S., Sohrabnejad-Eskan, I. & Over, H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catal. 8, 1864–1879 (2018).

    CAS  Google Scholar 

  47. Exner, K. S. Recent progress in the development of screening methods to identify electrode materials for the oxygen evolution reaction. Adv. Funct. Mater. 30, 2005060 (2020).

    CAS  Google Scholar 

  48. Moltved, K. A. & Kepp, K. P. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. J. Phys. Chem. C 123, 18432–18444 (2019).

    CAS  Google Scholar 

  49. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Google Scholar 

  50. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Niu, H., Piaggi, P. M., Invernizzi, M. & Parrinello, M. Molecular dynamics simulations of liquid silica crystallization. Proc. Natl Acad. Sci. USA 115, 5348–5352 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakong, S. & Groß, A. Water structures on a Pt(111) electrode from: ab initio molecular dynamic simulations for a variety of electrochemical conditions. Phys. Chem. Chem. Phys. 22, 10431–10437 (2020).

    CAS  PubMed  Google Scholar 

  53. Sakong, S. & Groß, A. The electric double layer at metal-water interfaces revisited based on a charge polarization scheme. J. Chem. Phys. 149, 084705 (2018).

    PubMed  Google Scholar 

  54. Kattirtzi, J. A., Limmer, D. T. & Willard, A. P. Microscopic dynamics of charge separation at the aqueous electrochemical interface. Proc. Natl Acad. Sci. USA 114, 13374–13379 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Limmer, D. T., Willard, A. P., Madden, P. & Chandler, D. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc. Natl Acad. Sci. USA 110, 4200–4205 (2013).

    CAS  PubMed Central  Google Scholar 

  56. Grifoni, E., Piccini, G. & Parrinello, M. Microscopic description of acid-base equilibrium. Proc. Natl Acad. Sci. USA 116, 4054–4057 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pinto, L. M. C., Quaino, P., Santos, E. & Schmickler, W. On the electrochemical deposition and dissolution of divalent metal ions. ChemPhysChem 15, 132–138 (2014).

    CAS  PubMed  Google Scholar 

  58. Pinto, L. M. C., Spohr, E., Quaino, P., Santos, E. & Schmickler, W. Why silver deposition is so fast: solving the enigma of metal deposition. Angew. Chem. Int. Ed. 52, 7883–7885 (2013).

    CAS  Google Scholar 

  59. Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

    CAS  Google Scholar 

  60. Fraggedakis, D. et al. Theory of coupled ion-electron transfer kinetics. Electrochim. Acta 367, 137432 (2021).

    CAS  Google Scholar 

  61. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS  PubMed  Google Scholar 

  62. Gileadi, E. & Kirowa-Eisner, E. Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corros. Sci. 47, 3068–3085 (2005).

    CAS  Google Scholar 

  63. Schmickler, W. & Santos, E. Interfacial Electrochemistry (Springer, 2010).

  64. Gileadi, E. Problems in interfacial electrochemistry that have been swept under the carpet. J. Solid State Electrochem. 15, 1359–1371 (2011).

    CAS  Google Scholar 

  65. He, Z. D., Chen, Y. X., Santos, E. & Schmickler, W. The pre-exponential factor in electrochemistry. Angew. Chem. Int. Ed. 57, 7948–7956 (2018).

    CAS  Google Scholar 

  66. Guidelli, R. et al. Defining the transfer coefficient in electrochemistry: an assessment (IUPAC Technical Report). Pure Appl. Chem. 86, 245–258 (2014).

    CAS  Google Scholar 

  67. Pfeifer, V. et al. Reactive oxygen species in iridium-based OER catalysts. Chem. Sci. 7, 6791–6795 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lubitz, W., Reijerse, E. J. & Messinger, J. Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ. Sci. 1, 15–31 (2008).

    CAS  Google Scholar 

  69. Haase, F. T. et al. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022).

    CAS  Google Scholar 

  70. Grimaud, A., Hong, W. T. & Tarascon, J. Anionic redox processes for electrochemical devices. Nat. Publ. Gr. 15, 121–126 (2016).

    CAS  Google Scholar 

  71. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    CAS  Google Scholar 

  72. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    CAS  Google Scholar 

  73. Francàs, L. et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    CAS  PubMed  Google Scholar 

  75. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    CAS  PubMed  Google Scholar 

  76. Pearce, P. E. et al. Revealing the reactivity of the iridium trioxide intermediate for the oxygen evolution reaction in acidic media. Chem. Mater. 31, 5845–5855 (2019).

    CAS  Google Scholar 

  77. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Boettcher, S. W. & Surendranath, Y. Heterogeneous electrocatalysis goes chemical. Nat. Catal. 4, 4–5 (2021).

    CAS  Google Scholar 

  79. Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021).

    CAS  Google Scholar 

  80. Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018).

    CAS  Google Scholar 

  81. Friebel, D. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    CAS  PubMed  Google Scholar 

  82. Demourgues-Guerlou, L., Braconnier, J. J. & Delmas, C. Iron-substituted nickel oxyhydroxides and hydroxides obtained by chimie douce. J. Solid State Chem. 104, 359–367 (1993).

    CAS  Google Scholar 

  83. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Shannon, W. B. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    CAS  PubMed  Google Scholar 

  84. Krivina, R. A. et al. Oxygen electrocatalysis on mixed-metal oxides/oxyhydroxides: from fundamentals to membrane electrolyzer technology. Acc. Mater. Res. 2, 548–558 (2021).

    CAS  Google Scholar 

  85. Zhou, Y. & López, N. The role of Fe species on NiOOH in oxygen evolution reactions. ACS Catal. 10, 6254–6261 (2020).

    CAS  Google Scholar 

  86. Zeradjanin, A. R., Menzel, N., Strasser, P. & Schuhmann, W. Role of water in the chlorine evolution reaction at RuO2-based electrodes-understanding electrocatalysis as a resonance phenomenon. ChemSusChem 5, 1897–1904 (2012).

    CAS  PubMed  Google Scholar 

  87. Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503–1512 (1984).

    CAS  Google Scholar 

  88. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia, A. C., Touzalin, T., Nieuwland, C., Perini, N. & Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem. Int. Ed. 58, 12999–13003 (2019).

    CAS  Google Scholar 

  90. Dette, C., Hurst, M. R., Deng, J., Nellist, M. R. & Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 11, 5590–5594 (2019).

    CAS  PubMed  Google Scholar 

  91. Deng, J. et al. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 17, 6922–6926 (2017).

    CAS  PubMed  Google Scholar 

  92. Liu, Z., Ma, R., Osada, M., Takada, K. & Sasaki, T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 127, 13869–13874 (2005).

    CAS  PubMed  Google Scholar 

  93. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    CAS  PubMed  Google Scholar 

  94. Norman, N. C. & Pringle, P. G. In defence of oxidation states. Dalt. Trans. 51, 400–410 (2022).

    CAS  Google Scholar 

  95. Karen, P., McArdle, P. & Takats, J. Toward a comprehensive definition of oxidation state (IUPAC Technical Report). Pure Appl. Chem. 86, 1017–1081 (2014).

    CAS  Google Scholar 

  96. Favaro, M. et al. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 139, 8960–8970 (2017).

    CAS  PubMed  Google Scholar 

  97. Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 16, 335–341 (2017).

    CAS  PubMed  Google Scholar 

  98. Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015).

    Google Scholar 

  99. Zhang, R. et al. Importance of water structure and catalyst-electrolyte interface on the design of water splitting catalysts. Chem. Mater. 31, 8248–8259 (2019).

    CAS  Google Scholar 

  100. Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    CAS  PubMed  Google Scholar 

  101. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    CAS  PubMed  Google Scholar 

  102. Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2023).

    CAS  Google Scholar 

  103. Löffler, T., Ludwig, A., Rossmeisl, J. & Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202109212 (2021).

  104. Batchelor, T. A. A. et al. Complex‐solid‐solution electrocatalyst discovery by computational prediction and high‐throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).

    CAS  Google Scholar 

  105. Svane, K. L. & Rossmeisl, J. Theoretical optimization of compositions of high-entropy oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 61 https://doi.org/10.1002/anie.202201146 (2022).

  106. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    CAS  PubMed  Google Scholar 

  107. Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).

    CAS  PubMed  Google Scholar 

  108. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    CAS  Google Scholar 

  109. Risch, M. Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media. Catalysts 7, 154 (2017).

    Google Scholar 

  110. Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    CAS  Google Scholar 

  111. Baeumer, C. et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 20, 674–682 (2021).

    CAS  PubMed  Google Scholar 

  112. Thorarinsdottir, A. E., Veroneau, S. S. & Nocera, D. G. Self-healing oxygen evolution catalysts. Nat. Commun. 13, 1243 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    CAS  Google Scholar 

  114. Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    CAS  Google Scholar 

  115. Nong, H. N. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOX core–shell electrocatalysts. Nat. Catal. 1, 841–851 (2018).

    CAS  Google Scholar 

  116. Yang, C. et al. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 11, 1378 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zeradjanin, A. R., Masa, J., Spanos, I. & Schlögl, R. Activity and stability of oxides during oxygen evolution reaction‐from mechanistic controversies toward relevant electrocatalytic descriptors. Front. Energy Res. 8, 1–17 (2021).

    Google Scholar 

  118. Martelli, G. N., Ornelas, R. & Faita, G. Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim. Acta 39, 1551–1558 (1994).

    CAS  Google Scholar 

  119. Antonyshyn, I. et al. Al2Pt for oxygen evolution in water splitting: a strategy for creating multifunctionality in electrocatalysis. Angew. Chem. Int. Ed. 59, 16770–16776 (2020).

    CAS  Google Scholar 

  120. Mondschein, J. S. et al. Intermetallic Ni2Ta electrocatalyst for the oxygen evolution reaction in highly acidic electrolytes. Inorg. Chem. 57, 6010–6015 (2018).

    CAS  PubMed  Google Scholar 

  121. Barrios Jimenez, A. M. et al. Hf2B2Ir5: a self-optimizing catalyst for the oxygen evolution reaction. ACS Appl. Energy Mater. 3, 11042–11052 (2020).

    CAS  Google Scholar 

  122. IRENA. Green Hydrogen Cost Reduction (IRENA, 2020); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

  123. Holst, M., Aschbrenner, S., Smolinka, T., Voglstätter, C. & Grimm, G. Cost Forecast for Low Temperature Electrolysis - Technology Driven Bottom-up Prognosis for PEM and Alkaline Water Electrolysis Systems (Fraunhofer Institut, 2021); https://doi.org/10.24406/publica-1318

  124. Schäfer, H. & Chatenet, M. Steel: the resurrection of a forgotten water-splitting catalyst. ACS Energy Lett. 3, 574–591 (2018).

    Google Scholar 

  125. Schäfer, H. et al. Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catal. Sci. Technol. 8, 2104–2116 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant no. 03EW0015B (CATLAB).

Author information

Authors and Affiliations

Authors

Contributions

S.Z.O. wrote the manuscript, with help from A.B. and B.R.C.

Corresponding author

Correspondence to Sebastian Z. Oener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Principal Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oener, S.Z., Bergmann, A. & Cuenya, B.R. Designing active oxides for a durable oxygen evolution reaction. Nat. Synth 2, 817–827 (2023). https://doi.org/10.1038/s44160-023-00376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00376-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing