Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

Abstract

Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage1,2,3,4,5. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid–electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles6,7,8,9,10,11. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid–electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of SEI formation on silicon surfaces.
Figure 2: Fabrication and characterization of DWSiNTs.
Figure 3: SEI formation on silicon electrodes with different nanostructures.
Figure 4: Electrochemical characteristics of DWSiNTs tested between 1 V and 0.01 V.

References

  1. 1

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009).

    Article  Google Scholar 

  3. 3

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–A140 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Besenhard, J. O., Yang, J. & Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 68, 87–90 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Raimann, P. R. et al. Monitoring dynamics of electrode reactions in Li-ion batteries by in situ ESEM. Ionics 12, 253–255 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Weydanz, W. J., Wohlfahrt-Mehrens, M. & Huggins, R. A. A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries. J. Power Sources 81, 237–242 (1999).

    Article  Google Scholar 

  11. 11

    Zhang, X. W. et al. Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J. Power Sources 125, 206–213 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M. D. & Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, A1457–A1464 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Deshpande, R., Cheng, Y. T. & Verbrugge, M. W. Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081–5088 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Verbrugge, M. W. & Cheng, Y. T. Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J. Electrochem. Soc. 156, A927–A937 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Cheng, Y. T. & Verbrugge, M. W. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phy. 104, 083521 (2008).

    Article  Google Scholar 

  17. 17

    Verbrugge, M. W., Cheng, Y. T. Stress distribution within spherical particles undergoing electrochemical insertion and extraction. Electrochem. Soc. Trans. 13, 127–139 (2008).

    Google Scholar 

  18. 18

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Cui, L. F., Ruffo, R., Chan, C. K., Peng, H. L. & Cui, Y. Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Cui, L. F., Yang, Y., Hsu, C. M. & Cui, Y. Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Hertzberg, B., Alexeev, A. & Yushin, G. Deformations in Si–Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Kim, H., Han, B., Choo, J. & Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Kim, H., Seo, M., Park, M. H. & Cho, J. A Critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2008).

    Article  Google Scholar 

  24. 24

    Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Park, M. H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Song, T. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Verma, P., Maire, P. & Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochem. Acta 55, 6332–6341 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Choi, J. W. et al. Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409–1413 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Chan, C. K., Ruffo, R., Hong, S. S. & Cui, Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Ruffo, R., Hong, S. S., Chan, C. K., Huggins, R. A. & Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Szczech, J. R. & Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Li, D. & Xia, Y. N. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (contract no. DE-AC02-05CH11231), and the Batteries for Advanced Transportation Technologies (BATT) Program (subcontract no. 6951379). This work is also partially supported by the SLAC National Accelerator Laboratory LDRD project. Y.C. acknowledges support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (no. KUS-l1-001-12). G.C. acknowledges support from the Agency of Science, Technology and Research Singapore (A*STAR) National Science Scholarship. M.T.M. acknowledges support from the Stanford Graduate Fellowship, the National Science Foundation Graduate Fellowship and the National Defense Science and Engineering Graduate Fellowship.

Author information

Affiliations

Authors

Contributions

H.W. and Y.C. conceived the idea. H.W., G.C. and Y.Y. carried out materials fabrication and electrochemical tests. J.W.C. and M.T.M. performed TEM measurements. I.R. and H.W. designed and carried out the simulations and analysed data. A.J performed Auger measurements. H.W. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4804 kb)

Supplementary information

Supplementary movie 1 (AVI 842 kb)

Supplementary information

Supplementary movie 2 (AVI 4047 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, H., Chan, G., Choi, J. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotech 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research