Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

Abstract

The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g−1 at scan rates of 10 V s−1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of 1,500 F cm−3 reaching the previously unmatched volumetric performance of RuO2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: MXene electrodes.
Figure 2: Electrochemical performance of planar MXene electrodes.
Figure 3: Electrochemical performance of macroporous Ti3C2Tx electrodes.

References

  1. 1

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Article  Google Scholar 

  2. 2

    Conway, B. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, 1999).

    Book  Google Scholar 

  3. 3

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  Google Scholar 

  4. 4

    Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. & Takasu, Y. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J. Phys. Chem. B 109, 7330–7338 (2005).

    Article  Google Scholar 

  5. 5

    Zheng, J. P., Cygan, P. J. & Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).

    Article  Google Scholar 

  6. 6

    Sassoye, C. et al. Block-copolymer-templated synthesis of electroactive RuO2-based mesoporous thin films. Adv. Funct. Mater. 19, 1922–1929 (2009).

    Article  Google Scholar 

  7. 7

    Hu, C.-C., Chang, K.-H., Lin, M.-C. & Wu, Y.-T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006).

    Article  Google Scholar 

  8. 8

    Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).

    Article  Google Scholar 

  9. 9

    Brezesinski, T., Wang, J., Tolbert, S. H. & Dunn, B. Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010).

    Article  Google Scholar 

  10. 10

    Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).

    Article  Google Scholar 

  11. 11

    Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  Google Scholar 

  12. 12

    Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

    Article  Google Scholar 

  13. 13

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1004 (2014).

    Article  Google Scholar 

  14. 14

    Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Google Scholar 

  15. 15

    Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    Article  Google Scholar 

  16. 16

    Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).

    Article  Google Scholar 

  17. 17

    Lukatskaya, M. R. et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015).

    Article  Google Scholar 

  18. 18

    Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).

    Article  Google Scholar 

  19. 19

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  Google Scholar 

  20. 20

    Benck, J. D., Pinaud, B. A., Gorlin, Y. & Jaramillo, T. F. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9, e107942 (2014).

    Article  Google Scholar 

  21. 21

    Darling, H. E. Conductivity of sulfuric acid solutions. J. Chem. Eng. Data 9, 421–426 (1964).

    Article  Google Scholar 

  22. 22

    Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    Article  Google Scholar 

  23. 23

    Lin, Z. et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016).

    Article  Google Scholar 

  24. 24

    Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article  Google Scholar 

  25. 25

    Mashtalir, O. et al. The effect of hydrazine intercalation on structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016).

    Article  Google Scholar 

  26. 26

    Li, Y. et al. Synthesis of hierarchically porous sandwich-like carbon materials for high-performance supercapacitors. Chem. Eur. J. 22, 16863–16871 (2016).

    Article  Google Scholar 

  27. 27

    Zhu, C. et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016).

    Article  Google Scholar 

  28. 28

    Yoo, J. J. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011).

    Article  Google Scholar 

  29. 29

    Chen, C.-M. et al. Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem. Commun. 48, 7149–7151 (2012).

    Article  Google Scholar 

  30. 30

    Lang, X.-Y. et al. Ultrahigh-power pseudocapacitors based on ordered porous heterostructures of electron-correlated oxides. Adv. Sci. 3, 1500319 (2016).

    Article  Google Scholar 

  31. 31

    El-Kady, M. F. et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl Acad. Sci. USA 112, 4233–4238 (2015).

    Article  Google Scholar 

  32. 32

    Lindström, H. et al. Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997).

    Article  Google Scholar 

  33. 33

    Barsoum, M. W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000).

    Article  Google Scholar 

  34. 34

    Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotech. 5, 651–654 (2010).

    Article  Google Scholar 

  35. 35

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    Article  Google Scholar 

  36. 36

    Zhu, M. et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016).

    Article  Google Scholar 

  37. 37

    Zhao, X. et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6, 5404–5412 (2012).

    Article  Google Scholar 

  38. 38

    Shen, S., Sudol, E. D. & El-Aasser, M. S. Control of particle size in dispersion polymerization of methyl methacrylate. J. Polym. Sci. A 31, 1393–1402 (1993).

    Article  Google Scholar 

  39. 39

    Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676–16681 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C.(E.) Ren for help with material synthesis. XRD, SEM and TEM investigations were performed at the Core Research Facilities (CRF) at Drexel University. Y.G., M.R.L. and M.-Q.Z. were supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences. S.K. was supported by the US National Science Foundation under grant number DMR-1310245. Z.-F. Lin was supported by China Scholarship Council (No. 201304490006). P.S. and P.-L.T. thank the ANR (LABEX STAEX) and RS2E for financial support. M.L. and N.S. acknowledge funding from the Binational Science Foundation (BSF) USA-Israel via Research Grant Agreement 2014083/2016.

Author information

Affiliations

Authors

Contributions

M.R.L. and Y.G. planned the study. S.K., M.R.L., Z.L. and N.S. conducted electrochemical testing. Z.L. and S.K. performed XRD and SEM analysis. M.-Q.Z., Z.L. and J.H. synthesized MXenes and fabricated electrodes. M.-Q.Z. performed TEM analysis. Y.G., P.S., M.R.L., M.D.L., P.-L.T. and M.W.B. supervised the research and discussed the results.

Corresponding authors

Correspondence to Patrice Simon or Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9. (PDF 2542 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukatskaya, M., Kota, S., Lin, Z. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing