Abstract
Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter1. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis2 being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Modular total syntheses of trans-clerodanes and sesquiterpene (hydro)quinones via tail-to-head cyclization and reductive coupling strategies
Nature Communications Open Access 04 November 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Smith, M. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley, 2013)
Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007)
Khripach, V. A., Zhabinskii, V. N., Konstantinova, O. V., Khripach, N. B. & Antonchick, A. P. Synthesis of 24-functionalized oxysterols. Russ. J. Bioorganic Chem . 28, 257–261 (2002)
Nicolaou, K. C., Härter, M. W., Gunzner, J. L. & Nadin, A. The Wittig and related reactions in natural product synthesis. Liebigs Ann. 1997, 1283–1301 (1997)
Cornella, J. et al. Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 138, 2174–2177 (2016)
Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016)
Toriyama, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016)
Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016)
Huihui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016)
Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015)
Corey, E. J . & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995)
Hatakeyama, T. et al. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun. 126, 1216–1218 (2009)
Bedford, R. B., Huwe, M. & Wilkinson, M. C. Iron-catalysed Negishi coupling of benzyl halides and phosphates. Chem. Commun. 12, 600–602 (2009)
Van Horn, D. E. & Negishi, E. Selective carbon-carbon bond formation via transition metal catalysts. 8. Controlled carbometalation. Reaction of acetylenes with organoalane-zirconocene dichloride complexes as a route to stereo- and regio-defined trisubstituted olefins. J. Am. Chem. Soc . 100, 2252–2254 (1978)
Hart, D. W., Blackburn, T. F., Schwartz, J. & Hydrozirconation, I. I. I. Stereospecific and regioselective functionalization of alkylacetylenes via vinylzirconium(IV) intermediates. J. Am. Chem. Soc. 97, 679–680 (1975)
Renata, H. et al. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc. 137, 1330–1340 (2015)
Sämann, C., Schade, M. A., Yamada, S. & Knochel, P. Functionalized alkenylzinc reagents bearing carbonyl groups: preparation by direct metal insertion and reaction with electrophiles. Angew. Chem. Int. Ed. 52, 9495–9499 (2013)
Yu, E. C., Johnson, B. M., Townsend, E. M., Schrock, R. R. & Hoveyda, A. H. Synthesis of linear (Z)-α,β-unsaturated esters by catalytic cross-metathesis. The influence of acetonitrile. Angew. Chem. Int. Ed. 55, 13210–13214 (2016)
Stork, G. & Danheiser, R. L. Regiospecific alkylation of cyclic β-diketone enol ethers. General synthesis of 4-alkylcyclohexenones. J. Org. Chem. 38, 1775–1776 (1973)
Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014)
Corey, E. J., Hartmann, R. & Vatakencherry, P. A. The synthesis of d,l-β-santalene and d,l-epi-β-santalene by stereospecific routes. J. Am. Chem. Soc. 84, 2611–2614 (1962)
Merritt, A. T. & Ley, S. V. Clerodane diterpenoids. Nat. Prod. Rep. 9, 243–287 (1992)
Das, S., Chandrasekhar, S., Yadav, J. S. & Grée, R. Recent developments in the synthesis of prostaglandins and analogues. Chem. Rev. 107, 3286–3337 (2007)
Sacramento, C. Q . et al. Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One 10, e0139236 (2015); correction 10, e0142246 (2015)
Moravcová, J., Čapková, J. & Staněk, J. One-pot synthesis of 1,2-O-isopropylidene-α-d-xylofuranose. Carbohydr. Res. 263, 61–66 (1994)
Talekar, R. R. & Wightman, R. H. Synthesis of some pyrrolo[2,3-d]pyrimidine and 1,2,3-triazole isonucleosides. Tetrahedron 53, 3831–3842 (1997)
Sen, C. K., Khanna, S. & Roy, S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 78, 2088–2098 (2006)
Noyori, R. et al. Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109, 5856–5858 (1987)
Kürti, L . & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms (Elsevier Academic, 2005)
Diederich, F . & Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH, 1998)
Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudohalides with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004)
Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 44, 674–688 (2005)
Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009)
Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C–alkyl and C–aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008)
Lou, S. & Fu, G. C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010)
Choi, J. & Fu, G. C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic α-bromonitriles. J. Am. Chem. Soc. 134, 9102–9105 (2012)
Choi, J., Martín-Gago, P. & Fu, G. C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones. J. Am. Chem. Soc. 136, 12161–12165 (2014)
Hatakeyama, T., Nakagawa, N. & Nakamura, M. Iron-catalyzed Negishi coupling toward an effective olefin synthesis. Org. Lett. 11, 4496–4499 (2009)
Piers, E. & Roberge, J. Y. Total syntheses of the diterpenoids (−)-kolavenol and (−)-agelasine B. Tetrahedr. Lett . 33, 6923–6926 (1992)
Slutskyy, Y. et al. Short enantioselective total syntheses of trans-clerodane diterpenoids: convergent fragment coupling using a trans-decalin tertiary radical generated from a tertiary alcohol precursor. J. Org. Chem. 81, 7029–7035 (2016)
Devos, M.-J., Hevesi, L., Bayet, P. & Krief, A. A new design for the synthesis of chrysanthemic esters and analogs and for the “pear ester” synthesis. Tetrahedr. Lett . 17, 3911–3914 (1976)
Devos, M. J., Denis, J. N. & Krief, A. New stereospecific synthesis of cis and trans d,1-chrysanthemic esters and analogs via a common intermediate. Tetrahedr. Lett . 19, 1847–1850 (1978)
Si, D., Sekar, N. M. & Kaliappan, K. P. A flexible and unified strategy for syntheses of cladospolides A, B, C, and iso-cladospolide B. Org. Biomol. Chem. 9, 6988–6997 (2011)
Banwell, M. G. & Loong, D. T. J. A chemoenzymatic total synthesis of the phytotoxic undecenolide (−)-cladospolide A. Org. Biomol. Chem. 2, 2050–2060 (2004)
Sharma, G. V. M., Reddy, K. L. & Reddy, J. J. First synthesis and determination of the absolute stereochemistry of iso-cladospolide-B and cladospolides-B and C. Tetrahedr. Lett . 47, 6537–6540 (2006)
Xing, Y. & O’Doherty, G. A. De novo asymmetric synthesis of cladospolide B−D: structural reassignment of cladospolide D via the synthesis of its enantiomer. Org. Lett. 11, 1107–1110 (2009)
Chênevert, R., Pelchat, N. & Morin, P. Lipase-mediated enantioselective acylation of alcohols with functionalized vinyl esters: acyl donor tolerance and applications. Tetrahedron Asymmetry 20, 1191–1196 (2009)
Avocetien, K. F. et al. De novo asymmetric synthesis of phoracantholide. J. Org. Lett. 18, 4970–4973 (2016)
Corey, E. J., Weinshenker, N. M., Schaaf, T. K. & Huber, W. Stereo-controlled synthesis of dl-prostaglandins F2α and E2 . J. Am. Chem. Soc. 91, 5675–5677 (1969)
Coulthard, G., Erb, W. & Aggarwal, V. K. Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps. Nature 489, 278–281 (2012)
Jervis, P. J. & Cox, L. R. Total synthesis and proof of relative stereochemistry of (−)-aureonitol. J. Org. Chem. 73, 7616–7624 (2008)
Pearce, B. C., Parker, R. A., Deason, M. E., Qureshi, A. A. & Wright, J. J. K. Hypocholesterolemic activity of synthetic and natural tocotrienols. J. Med. Chem. 35, 3595–3606 (1992)
Knouse, K. W. & Wuest, W. M. The enantioselective synthesis and biological evaluation of chimeric promysalin analogs facilitated by diverted total synthesis. J. Antibiot. 69, 337–339 (2016)
Acknowledgements
Financial support for this work was provided by Bristol-Myers Squibb and the NIH/NIGMS (GM118176). The Department of Defense (DoD) supported a predoctoral fellowship to J.T.E. (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program), and the NIH supported a postdoctoral fellowship to L.R.M. (F32GM117816). We thank D.-H. Huang and L. Pasternack for assistance with NMR spectroscopy; M. R. Ghadiri for access to preparative high-performance liquid chromatography equipment; M. Schmidt and E.-X. Zhang for discussions; and M. Yan for assistance in the preparation of the manuscript. We are grateful to LEO Pharma for the donation of fusidic acid and to R. Shenvi for providing Mn(dpm)3.
Author information
Authors and Affiliations
Contributions
J.T.E., R.R.M. and P.S.B. conceived the work. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q., B.V., S.A.S., M.D.E. and P.S.B. designed the experiments and analysed the data. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q. and B.V. performed the experiments. D.-H.B., F.-L.W. and T.Z. performed mole-scale experiments. P.S.B. wrote the manuscript. J.T.E., R.R.M., K.W.M. and K.W.K. assisted in writing and editing the manuscript.
Corresponding author
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Text, Figures and Data – see contents for details. (PDF 20401 kb)
Rights and permissions
About this article
Cite this article
Edwards, J., Merchant, R., McClymont, K. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017). https://doi.org/10.1038/nature22307
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature22307
This article is cited by
-
Recyclable Copper-Catalyzed Decarboxylative C–C Coupling of the sp3-Hybridized Carbon Atoms of α-Amino Acids
Catalysis Letters (2023)
-
Modular total syntheses of trans-clerodanes and sesquiterpene (hydro)quinones via tail-to-head cyclization and reductive coupling strategies
Nature Communications (2022)
-
Visible light-driven conjunctive olefination
Nature Chemistry (2022)
-
Concise, scalable and enantioselective total synthesis of prostaglandins
Nature Chemistry (2021)
-
Catalytic radical generation of π-allylpalladium complexes
Nature Catalysis (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.