Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decarboxylative alkenylation

Abstract

Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter1. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis2 being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of Ni- and Fe-catalysed decarboxylative alkenylation.
Figure 2: Substrate scope of decarboxylative alkenylation.
Figure 3: Total synthesis enabled by decarboxylative alkenylation.

Similar content being viewed by others

References

  1. Smith, M. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley, 2013)

  2. Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Khripach, V. A., Zhabinskii, V. N., Konstantinova, O. V., Khripach, N. B. & Antonchick, A. P. Synthesis of 24-functionalized oxysterols. Russ. J. Bioorganic Chem . 28, 257–261 (2002)

    Article  CAS  Google Scholar 

  4. Nicolaou, K. C., Härter, M. W., Gunzner, J. L. & Nadin, A. The Wittig and related reactions in natural product synthesis. Liebigs Ann. 1997, 1283–1301 (1997)

    Article  Google Scholar 

  5. Cornella, J. et al. Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 138, 2174–2177 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toriyama, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huihui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Corey, E. J . & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995)

  12. Hatakeyama, T. et al. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun. 126, 1216–1218 (2009)

    Article  CAS  Google Scholar 

  13. Bedford, R. B., Huwe, M. & Wilkinson, M. C. Iron-catalysed Negishi coupling of benzyl halides and phosphates. Chem. Commun. 12, 600–602 (2009)

    Article  Google Scholar 

  14. Van Horn, D. E. & Negishi, E. Selective carbon-carbon bond formation via transition metal catalysts. 8. Controlled carbometalation. Reaction of acetylenes with organoalane-zirconocene dichloride complexes as a route to stereo- and regio-defined trisubstituted olefins. J. Am. Chem. Soc . 100, 2252–2254 (1978)

    Article  CAS  Google Scholar 

  15. Hart, D. W., Blackburn, T. F., Schwartz, J. & Hydrozirconation, I. I. I. Stereospecific and regioselective functionalization of alkylacetylenes via vinylzirconium(IV) intermediates. J. Am. Chem. Soc. 97, 679–680 (1975)

    Article  CAS  Google Scholar 

  16. Renata, H. et al. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc. 137, 1330–1340 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sämann, C., Schade, M. A., Yamada, S. & Knochel, P. Functionalized alkenylzinc reagents bearing carbonyl groups: preparation by direct metal insertion and reaction with electrophiles. Angew. Chem. Int. Ed. 52, 9495–9499 (2013)

    Article  CAS  Google Scholar 

  18. Yu, E. C., Johnson, B. M., Townsend, E. M., Schrock, R. R. & Hoveyda, A. H. Synthesis of linear (Z)-α,β-unsaturated esters by catalytic cross-metathesis. The influence of acetonitrile. Angew. Chem. Int. Ed. 55, 13210–13214 (2016)

    Article  CAS  Google Scholar 

  19. Stork, G. & Danheiser, R. L. Regiospecific alkylation of cyclic β-diketone enol ethers. General synthesis of 4-alkylcyclohexenones. J. Org. Chem. 38, 1775–1776 (1973)

    Article  CAS  Google Scholar 

  20. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corey, E. J., Hartmann, R. & Vatakencherry, P. A. The synthesis of d,l-β-santalene and d,l-epi-β-santalene by stereospecific routes. J. Am. Chem. Soc. 84, 2611–2614 (1962)

    Article  CAS  Google Scholar 

  22. Merritt, A. T. & Ley, S. V. Clerodane diterpenoids. Nat. Prod. Rep. 9, 243–287 (1992)

    Article  CAS  PubMed  Google Scholar 

  23. Das, S., Chandrasekhar, S., Yadav, J. S. & Grée, R. Recent developments in the synthesis of prostaglandins and analogues. Chem. Rev. 107, 3286–3337 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Sacramento, C. Q . et al. Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One 10, e0139236 (2015); correction 10, e0142246 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Moravcová, J., Čapková, J. & Staněk, J. One-pot synthesis of 1,2-O-isopropylidene-α-d-xylofuranose. Carbohydr. Res. 263, 61–66 (1994)

    Article  Google Scholar 

  26. Talekar, R. R. & Wightman, R. H. Synthesis of some pyrrolo[2,3-d]pyrimidine and 1,2,3-triazole isonucleosides. Tetrahedron 53, 3831–3842 (1997)

    Article  CAS  Google Scholar 

  27. Sen, C. K., Khanna, S. & Roy, S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 78, 2088–2098 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Noyori, R. et al. Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109, 5856–5858 (1987)

    Article  CAS  Google Scholar 

  29. Kürti, L . & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms (Elsevier Academic, 2005)

  30. Diederich, F . & Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH, 1998)

  31. Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudohalides with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004)

    Article  CAS  Google Scholar 

  32. Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 44, 674–688 (2005)

    Article  CAS  Google Scholar 

  33. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009)

    Article  CAS  Google Scholar 

  34. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C–alkyl and C–aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Lou, S. & Fu, G. C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, J. & Fu, G. C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic α-bromonitriles. J. Am. Chem. Soc. 134, 9102–9105 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, J., Martín-Gago, P. & Fu, G. C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones. J. Am. Chem. Soc. 136, 12161–12165 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatakeyama, T., Nakagawa, N. & Nakamura, M. Iron-catalyzed Negishi coupling toward an effective olefin synthesis. Org. Lett. 11, 4496–4499 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. Piers, E. & Roberge, J. Y. Total syntheses of the diterpenoids (−)-kolavenol and (−)-agelasine B. Tetrahedr. Lett . 33, 6923–6926 (1992)

    CAS  Google Scholar 

  40. Slutskyy, Y. et al. Short enantioselective total syntheses of trans-clerodane diterpenoids: convergent fragment coupling using a trans-decalin tertiary radical generated from a tertiary alcohol precursor. J. Org. Chem. 81, 7029–7035 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Devos, M.-J., Hevesi, L., Bayet, P. & Krief, A. A new design for the synthesis of chrysanthemic esters and analogs and for the “pear ester” synthesis. Tetrahedr. Lett . 17, 3911–3914 (1976)

    Article  Google Scholar 

  42. Devos, M. J., Denis, J. N. & Krief, A. New stereospecific synthesis of cis and trans d,1-chrysanthemic esters and analogs via a common intermediate. Tetrahedr. Lett . 19, 1847–1850 (1978)

    Article  Google Scholar 

  43. Si, D., Sekar, N. M. & Kaliappan, K. P. A flexible and unified strategy for syntheses of cladospolides A, B, C, and iso-cladospolide B. Org. Biomol. Chem. 9, 6988–6997 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Banwell, M. G. & Loong, D. T. J. A chemoenzymatic total synthesis of the phytotoxic undecenolide (−)-cladospolide A. Org. Biomol. Chem. 2, 2050–2060 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Sharma, G. V. M., Reddy, K. L. & Reddy, J. J. First synthesis and determination of the absolute stereochemistry of iso-cladospolide-B and cladospolides-B and C. Tetrahedr. Lett . 47, 6537–6540 (2006)

    CAS  Google Scholar 

  46. Xing, Y. & O’Doherty, G. A. De novo asymmetric synthesis of cladospolide B−D: structural reassignment of cladospolide D via the synthesis of its enantiomer. Org. Lett. 11, 1107–1110 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. Chênevert, R., Pelchat, N. & Morin, P. Lipase-mediated enantioselective acylation of alcohols with functionalized vinyl esters: acyl donor tolerance and applications. Tetrahedron Asymmetry 20, 1191–1196 (2009)

    Article  CAS  Google Scholar 

  48. Avocetien, K. F. et al. De novo asymmetric synthesis of phoracantholide. J. Org. Lett. 18, 4970–4973 (2016)

    Article  CAS  Google Scholar 

  49. Corey, E. J., Weinshenker, N. M., Schaaf, T. K. & Huber, W. Stereo-controlled synthesis of dl-prostaglandins F2α and E2 . J. Am. Chem. Soc. 91, 5675–5677 (1969)

    Article  CAS  PubMed  Google Scholar 

  50. Coulthard, G., Erb, W. & Aggarwal, V. K. Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps. Nature 489, 278–281 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Jervis, P. J. & Cox, L. R. Total synthesis and proof of relative stereochemistry of (−)-aureonitol. J. Org. Chem. 73, 7616–7624 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Pearce, B. C., Parker, R. A., Deason, M. E., Qureshi, A. A. & Wright, J. J. K. Hypocholesterolemic activity of synthetic and natural tocotrienols. J. Med. Chem. 35, 3595–3606 (1992)

    Article  CAS  PubMed  Google Scholar 

  53. Knouse, K. W. & Wuest, W. M. The enantioselective synthesis and biological evaluation of chimeric promysalin analogs facilitated by diverted total synthesis. J. Antibiot. 69, 337–339 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by Bristol-Myers Squibb and the NIH/NIGMS (GM118176). The Department of Defense (DoD) supported a predoctoral fellowship to J.T.E. (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program), and the NIH supported a postdoctoral fellowship to L.R.M. (F32GM117816). We thank D.-H. Huang and L. Pasternack for assistance with NMR spectroscopy; M. R. Ghadiri for access to preparative high-performance liquid chromatography equipment; M. Schmidt and E.-X. Zhang for discussions; and M. Yan for assistance in the preparation of the manuscript. We are grateful to LEO Pharma for the donation of fusidic acid and to R. Shenvi for providing Mn(dpm)3.

Author information

Authors and Affiliations

Authors

Contributions

J.T.E., R.R.M. and P.S.B. conceived the work. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q., B.V., S.A.S., M.D.E. and P.S.B. designed the experiments and analysed the data. J.T.E., R.R.M., K.S.M., K.W.K., L.R.M., T.Q. and B.V. performed the experiments. D.-H.B., F.-L.W. and T.Z. performed mole-scale experiments. P.S.B. wrote the manuscript. J.T.E., R.R.M., K.W.M. and K.W.K. assisted in writing and editing the manuscript.

Corresponding author

Correspondence to Phil S. Baran.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Figures and Data – see contents for details. (PDF 20401 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, J., Merchant, R., McClymont, K. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017). https://doi.org/10.1038/nature22307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22307

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing