Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode

Abstract

Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions1,2, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities3,4,5,6. If the optomechanical coupling is ‘quantum coherent’—that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate—quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures7,8. Optical experiments have not attained this regime owing to the large mechanical decoherence rates9 and the difficulty of overcoming optical dissipation10. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links11,12,13,14,15.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optomechanical microresonators.
Figure 2: Optomechanical interaction in the weak coupling regime ( ).
Figure 3: Quantum-coherent coupling.
Figure 4: Coherent exchange between the optical field and the micromechanical oscillator.

References

  1. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  2. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scripta T76, 127–137 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Braginsky, V. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977)

    Google Scholar 

  4. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  ADS  CAS  Google Scholar 

  9. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    Article  ADS  Google Scholar 

  10. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  CAS  Google Scholar 

  11. Zhang, J., Peng, K. & Braunstein, S. L. Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  12. Tian, L. & Wang, H. Optical wavelength conversion of quantum states with optomechanics. Phys. Rev. A 82, 053806 (2010)

    Article  ADS  Google Scholar 

  13. Akram, U., Kiesel, N., Aspelmeyer, M. & Milburn, G. J. Single-photon opto-mechanics in the strong coupling regime. N. J. Phys. 12, 083030 (2010)

    Article  Google Scholar 

  14. Stannigel, K., Rabl, P., Sorensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

  16. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005)

    Article  Google Scholar 

  17. Teufel, J. D. et al. Circuit cavity electromechanics in the strong coupling regime. Nature 471, 204–208 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  20. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Khalili, F. et al. Preparing a mechanical oscillator in non-Gaussian quantum states. Phys. Rev. Lett. 105, 070403 (2010)

    Article  ADS  Google Scholar 

  22. Romero-Isart, O. et al. Optically levitating dielectrics in the quantum regime: theory and protocols. Phys. Rev. A 83, 013803 (2011)

    Article  ADS  Google Scholar 

  23. Arcizet, O., Rivière, R., Schliesser, A., Anetsberger, G. & Kippenberg, T. J. Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80, 021803(R) (2009)

    Article  ADS  Google Scholar 

  24. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008)

    Article  CAS  Google Scholar 

  25. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Rivière, R. et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011)

    Article  ADS  Google Scholar 

  27. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Lee, K. H., McRae, T. G., Harris, G. I., Knittel, J. & Bowen, W. P. Cooling and control of a cavity optoelectromechanical system. Phys. Rev. Lett. 104, 123604 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Rivière for early contributions to this project and E. Gavartin and I. Vázquez García for assistance in the early microfabrication phase. This work was supported by an ERC Starting Grant (SiMP), the DARPA/MTO ORCHID program through a grant from the AFOSR, the NCCR Quantum Science and Technology and the Swiss National Science Foundation. E.V. acknowledges a Rubicon Grant from the Netherlands Organization for Scientific Research (NWO), co-financed by a Marie Curie Cofund Action. S.D. is supported by a Marie Curie Individual Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The cryogenic cooling, measurement, and sample design and fabrication was carried out jointly by S.D., E.V and S.W. The theoretical model for data analysis was developed by A.S. All authors discussed the experimental data and jointly wrote the manuscript. T.J.K. supervised the work.

Corresponding author

Correspondence to T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-3 comprising: 1) Experimental Details; 2) Optimized spoke anchored toroidal resonator; and 3) Modeling of optomechanical interaction (see Contents on page 1 for more details). It also includes Supplementary Figures 1-7 with legends and additional references. (PDF 1341 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhagen, E., Deléglise, S., Weis, S. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012). https://doi.org/10.1038/nature10787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10787

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing