Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser

Abstract

Pump–probe experiments with subfemtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of subfemtosecond pulse pairs from a two-colour X-ray free-electron laser. By measuring the delay between the two pulses with an angular streaking diagnostic, we characterize the group velocity of the X-ray free-electron laser and show control of the pulse delay down to 270 as. We confirm the application of this technique to a pump–probe measurement in core-ionized para-aminophenol. These results reveal the ability to perform pump–probe experiments with subfemtosecond resolution and atomic site specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental configuration for the two-colour attosecond XFEL.
Fig. 2: Attosecond pump–probe delay determination using angular streaking.
Fig. 3: Pulse parameter in the two-colour pulse-pair configuration.
Fig. 4: Experimental demonstration of the attosecond pump–probe capability.

Similar content being viewed by others

Data availability

A subset of the raw data used to produce Figs. 14 is publicly available via Figshare at https://doi.org/10.6084/m9.figshare.23232350.v2 (ref. 61). This repository also contains a copy of the analysis script used to generate the streaking correlation maps and the photoemission spectroscopy data. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Zewail, A. H. Laser femtochemistry. Science 242, 1645–1653 (1988).

    Article  ADS  Google Scholar 

  2. Siegbahn, K. Electron spectroscopy for atoms, molecules, and condensed matter. Rev. Mod. Phys. 54, 709–728 (1982).

    Article  ADS  Google Scholar 

  3. Picón, A. et al. Hetero-site-specific X-ray pump–probe spectroscopy for femtosecond intramolecular dynamics. Nat. Commun. 7, 11652 (2016).

    Article  ADS  Google Scholar 

  4. Berrah, N. et al. Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization. Nat. Phys. 15, 1279–1283 (2019).

    Article  Google Scholar 

  5. Barillot, T. et al. Correlation-driven transient hole dynamics resolved in space and time in the isopropanol molecule. Phys. Rev. X 11, 031048 (2021).

    Google Scholar 

  6. Schwickert, D. et al. Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time. Science Advances 8, eabn6848 (2022).

    Article  Google Scholar 

  7. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  8. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  9. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  10. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  11. Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nat. Phys. 3, 846–850 (2007).

    Article  Google Scholar 

  12. Fabris, D. et al. Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments. Nat. Photonics 9, 383–387 (2015).

    Article  ADS  Google Scholar 

  13. Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

    Article  ADS  Google Scholar 

  14. Okino, T. et al. Direct observation of an attosecond electron wave packet in a nitrogen molecule. Sci. Adv. 1, e1500356 (2015).

    Article  ADS  Google Scholar 

  15. Tzallas, P., Skantzakis, E., Nikolopoulos, La. A., Tsakiris, G. D. & Charalambidis, D. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nat. Phys. 7, 781–784 (2011).

    Article  Google Scholar 

  16. Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14, 30–36 (2020).

    Article  Google Scholar 

  17. Zhang, Z. et al. Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler. New J. Phys. 22, 083030 (2020).

    Article  ADS  Google Scholar 

  18. Duris, J. P. et al. Controllable X-ray pulse trains from enhanced self-amplified spontaneous emission. Phys. Rev. Lett. 126, 104802 (2021).

    Article  ADS  Google Scholar 

  19. Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).

    Article  ADS  Google Scholar 

  20. Grell, G. et al. Effect of the shot-to-shot variation on charge migration induced by sub-fs x-ray free-electron laser pulses. Phys. Rev. Res. 5, 023092 (2023).

    Article  Google Scholar 

  21. Driver, T. et al. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys. Chem. Chem. Phys. 22, 2704–2712 (2020).

    Article  Google Scholar 

  22. Glownia, J. M. et al. Time-resolved pump–probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    Article  ADS  Google Scholar 

  23. Kang, H.-S. et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708–713 (2017).

    Article  ADS  Google Scholar 

  24. Bionta, M. R. et al. Spectral encoding of x-ray/optical relative delay. Opt. Express 19, 21855–21865 (2011).

    Article  ADS  Google Scholar 

  25. Hartmann, N. et al. Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers. Nat. Photonics 8, 706–709 (2014).

    Article  ADS  Google Scholar 

  26. Maroju, P. K. et al. Attosecond coherent control of electronic wave packets in two-colour photoionization using a novel timing tool for seeded free-electron laser. Nat. Photonics 17, 200–207 (2023).

    Article  ADS  Google Scholar 

  27. Lutman, A. A. et al. Experimental demonstration of femtosecond two-color X-ray free-electron lasers. Phys. Rev. Lett. 110, 134801 (2013).

    Article  ADS  Google Scholar 

  28. Hara, T. et al. Two-colour hard X-ray free-electron laser with wide tunability. Nat. Commun. 4, 2919 (2013).

    Article  ADS  Google Scholar 

  29. Lutman, A. A. et al. Fresh-slice multicolour Xray free-electron lasers. Nat. Photonics 10, 745–750 (2016).

    Article  ADS  Google Scholar 

  30. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  31. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Revi. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  Google Scholar 

  32. Lindroth, E. et al. Challenges and opportunities in attosecond and XFEL science. Nat. Rev. Phys. 1, 107–111 (2019).

    Article  Google Scholar 

  33. Zholents, A. A. Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 8, 040701 (2005).

    Article  ADS  Google Scholar 

  34. Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photonics 12, 215–220 (2018).

    Article  ADS  Google Scholar 

  35. Li, S. et al. A co-axial velocity map imaging spectrometer for electrons. AIP Adv. 8, 115308 (2018).

    Article  ADS  Google Scholar 

  36. Walter, P. et al. The time-resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 29, 957–968 (2022).

    Article  Google Scholar 

  37. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  38. Huang, Z. & Kim, K.-J. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel. Beams 10, 034801 (2007).

    Article  ADS  Google Scholar 

  39. Pellegrini, C., Marinelli, A. & Reiche, S. The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  40. Baxevanis, P., Duris, J., Huang, Z. & Marinelli, A. Time-domain analysis of attosecond pulse generation in an x-ray free-electron laser. Phys. Rev. Accel. Beams 21, 110702 (2018).

    Article  ADS  Google Scholar 

  41. Yang, X., Mirian, N. & Giannessi, L. Postsaturation dynamics and superluminal propagation of a superradiant spike in a free-electron laser amplifier. Phys. Rev. Accel. Beams 23, 010703 (2020).

    Article  ADS  Google Scholar 

  42. Hajima, R., Nishimori, N., Nagai, R. & Minehara, E. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL. Nucl. Instrum. Methods Phys. Res. A 475, 270–275 (2001).

    Article  ADS  Google Scholar 

  43. Bonifacio, R., Souza, L. D. S., Pierini, P. & Piovella, N. The superradiant regime of a FEL: analytical and numerical results. Nucl. Instrum. Methods Phys. Res. A 296, 358–367 (1990).

    Article  ADS  Google Scholar 

  44. Mirian, N. S. et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat. Photonics 15, 523–529 (2021).

    Article  ADS  Google Scholar 

  45. Obaid, R. et al. LCLS in—photon out: fluorescence measurement of neon using soft x-rays. J. Phys. B At. Mol. Opt. Phys. 51, 034003 (2018).

    Article  ADS  Google Scholar 

  46. Li, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science 375, 285–290 (2022).

    Article  ADS  Google Scholar 

  47. Zhaunerchyk, V. et al. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation. J. Phys. B At. Mol. Opt. Phys. 48, 244003 (2015).

    Article  ADS  Google Scholar 

  48. Artemyev, A. N., Streltsov, A. I. & Demekhin, P. V. Controlling dynamics of postcollision interaction. Phys. Rev. Lett. 122, 183201 (2019).

    Article  ADS  Google Scholar 

  49. Bartolini, R., Doria, A., Gallerano, G. & Renieri, A. Theoretical and experimental aspects of a waveguide FEL Nucl. Instrum. Methods Phys. Res. A 304, 417–420 (1991).

    Article  ADS  Google Scholar 

  50. Fisher, A. et al. Single-pass high-efficiency terahertz free-electron laser. Nat. Photonics 16, 441–447 (2022).

    Article  ADS  Google Scholar 

  51. Al-Haddad, A. et al. Observation of site-selective chemical bond changes via ultrafast chemical shifts. Nat. Commun. 13, 7170 (2022).

    Article  ADS  Google Scholar 

  52. O’Neal, J. T. et al. Electronic population transfer via impulsive stimulated X-ray raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020).

    Article  ADS  Google Scholar 

  53. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  Google Scholar 

  54. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. Attosecond molecular dynamics: fact or fiction? Nat. Photonics 8, 195–204 (2014).

    Article  ADS  Google Scholar 

  55. Emma, C. et al. Terawatt attosecond x-ray source driven by a plasma accelerator. APL Photonics 6, 076107 (2021).

    Article  ADS  Google Scholar 

  56. Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 14, 391–397 (2020).

    Article  ADS  Google Scholar 

  57. Abbamonte, P. et al. New Science Opportunities Enabled by LCLS-II X-Ray Lasers (SLAC National Accelerator Lab., 2015); https://doi.org/10.2172/1630267

  58. Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).

    Article  ADS  Google Scholar 

  59. Russek, A. & Mehlhorn, W. Post-collision interaction and the Auger lineshape. J. Phys. B: At. Mol. Phys. 19, 911 (1986).

    Article  ADS  Google Scholar 

  60. Frasinski, Leszek J. Covariance mapping techniques. J. Phys. B: At. Mol. Opt. Phys. 49, 152004 (2016).

    Article  ADS  Google Scholar 

  61. Guo, Z. et al. Raw data for Experimental Demonstration of Attosecond Pump–Probe Spectroscopy with an X-Ray Free-Electron Laser. FigShare https://doi.org/10.6084/m9.figshare.23232350.v2 (2023).

Download references

Acknowledgements

Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-76SF00515. A.M., D.C., P.L.F., R.R.R., Z.H. and Z.G. acknowledge support from the Accelerator and Detector Research Program of the Department of Energy, Basic Energy Sciences division. Z.G., P.L.F. and R.R.R. also acknowledge support from the Robert Siemann Fellowship of Stanford University. The effort from T.D., J.W., E.I., J.T.O., A.L.W., M.F.K., P.H.B., T.J.A.W. and J.P.C. is supported by the US Department of Energy, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (CSGB). C.B. acknowledges funding from the Swiss National Science Foundation (SNSF) project grant 200021-197372. L.F.D., D.T. and G.A.M. acknowledge support from the US Department of Energy, Office of Science, Basic Energy Sciences under awards DE-FG02-04ER15614 and DE-SC0012462. V.A. and M.R. acknowledge support from the UK’s Engineering and Physical Sciences Research Council (EPSRC) through the grant ‘Quantum entanglement in attosecond ionization’, grant number EP/V009192/1. O.A. and J.P.M. were supported by UK EPSRC grant numbers EP/R019509/1, EP/X026094/1 and EP/T006943/1. T.W., D.S.S. and O.G. are supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under the contract number DE-AC02-05CH11231. L.Y. and G.D. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award DE-AC02-06CH11357. D.R., A.R. and E.W. are supported by the same funding agency under grant number DE-FG02-86ER13491. S.B. and N.B. are supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under the contract number DE-SC0012376. A.M. would like to acknowledge L. Giannessi and P. Musumeci for useful discussions and suggestions. L.I. would like to acknowledge helpful discussion with S.-K. Son and acknowledges support from DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, and the Cluster of Excellence ‘CUI: Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft (DFG) – EXC 2056 – project ID 390715994.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., T.D., J.P.C. and A.M. conceived the two-colour streaking experiment. C.B., V.A., M.R., L.F.D., G.D., O.G., D.R., A.R., D.S.S., K.U., T.W., L.Y., P.H.B., J.P.M., M.F.K., P.W., N.B., T.D., J.P.C. and A.M. conceived the aminophenol pump–probe experiment. Z.G., D.C., D.B., K.A.L., J.D., P.L.F., R.R.R., N.S.S., Z.Z. and A.M. set up the attosecond XFEL configuration. Z.G., P.L.F., S.L., T.D., J.W., E.I., K.A.L., J.M.G., X.C., X.L., M.-F.L., A.K., R.O., N.S.S., E.T., M.F.K., J.P.C. and A.M. conducted the angular streaking measurements to determine the pulse separation. Z.G., T.D., S.B., D.C., J.D., P.L.F., O.A., C.B., X.C., L.F.D., G.D., R.F., O.G., J.M.G., E.I., A.K., K.A.L., S.L., X.L., M.-F.L., G.A.M., R.O., J.T.O., R.R.R., D.R., A.R., D.S.S., N.S.S., D.T., E.T., K.U., E.W., A.L.W., J.W., T.W., T.J.A.W., L.Y., Z.Z., P.H.B., J.P.M., M.F.K., P.W., N.B., J.P.C. and A.M. conducted the aminophenol pump–probe experiment. Z.G., S.B., P.L.F., S.L., T.D., Z.H., R.R.R., E.I., J.W., L.I., N.B., J.P.C. and A.M. performed the data analysis and interpreted the data. Z.G., Z.Z., R.R.R. and D.C. conducted numerical simulations of the FEL. All authors were involved in the writing of the paper.

Corresponding authors

Correspondence to James P. Cryan or Agostino Marinelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Brian Abbey, Heung-Sik Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Accelerator configuration

Extended Data Fig. 1 Undulator configuration in the ω/2ω mode.

Values of undulator K were set to be on resonance with ω and 2ω pulses in the first and second undulator section, respectively. The transparent grey area shows the location of the magnetic delay chicane.

Extended Data Fig. 2 Measured two-dimensional projection of the photoelectron momentum distribution recorded by the c-VMI in the absence of the circularly polarised streaking field.

The left panel shows the data from Fig. 1c in polar coordinates. The 1-D trace on the right-hand-side shows the electron yield integrated over all detector angles. Two pairs of dashed lines label lower and upper bounds of integrating electron yields in 2 photoemission features for the delay analysis.

Extended Data Fig. 3 Partial covariance between the measured photon energy spectrum and the photoelectron kinetic energy spectrum in the vicinity of the carbon K-shell ionisation features.

The partial covariance uses the pump pulse intensity as a fluctuating parameter. The red curve shows the averaged photon spectra for each delay. The blue dashed line shows the best fit line to the dispersive photoemission feature. The black dotted line is the fit of the first delay that is used as a reference.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Discussion and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Driver, T., Beauvarlet, S. et al. Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01419-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01419-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing