Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

T-cell programming in pancreatic adenocarcinoma: a review

Abstract

Despite recent advancements in multimodal therapy, pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. In the era of burgeoning immune therapies against previously difficult-to-treat malignancies, there has been growing interest in activating the immune system against PDA; however, unlike in other cancers such as melanoma and lymphoma, immunotherapy has not yielded many clinically significant results. To harness these mechanisms for therapeutic use, an in-depth understanding of T-cell programming in the immune microenvironment of PDA must be achieved. The outcome of T-cell programming against pathogens or cancer depends on the uptake and presentation of foreign antigens by dendritic cells and macrophages to T cells, and the expression of various co-stimulatory molecules and cytokines. Subsequent immune responses are kept in check via regulatory mechanisms such as immune checkpoints (for example, programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4)), as well as other immunosuppressive cell types such as regulatory T cells (Treg) and M2 macrophages. PDA presents a challenge from the perspective of immune therapy because of many immunosuppressive mechanisms at play in its microenvironment. The tumor itself produces IL-10 and transforming growth factor beta (TGF-β) that downregulate T-cell activation as well as the activity of antigen-presenting cells. At the same time, PDA also appears to recruit more regulatory elements into its milieu; higher infiltration of Treg, for instance, has been associated with poorer prognosis in PDA patients. M2 macrophages and myeloid-derived suppressive cells are also highly prevalent in the tumor microenvironment. T cells in PDA have high expression of PD-1, whereas the tumor has high expression of PD-L1, which likely inhibits activation of tumor antigen-specific T cells. Many of these immunosuppressive mechanisms have been targeted as potential immune therapies of PDA. Immune checkpoint inhibitors, which target PD-1 and CTLA-4, have been shown to be effective in other cancers such as melanoma; however, they have not demonstrated outcome benefits in PDA so far. Other novel investigational approaches under study currently include inhibiting the homing of immunosuppressive cell types to the tumor milieu, as well as vaccines designed to boost the adaptive response to PDA antigens. As our understanding of the nuanced and complex interactions of the immune microenvironment expands, more targeted approaches can be taken toward achieving therapeutic success in immune therapy against PDA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  PubMed  Google Scholar 

  2. Simard EP, Ward EM, Siegel R, Jemal A . Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin 2012; 62: 118–128.

    Article  PubMed  Google Scholar 

  3. Emmrich J, Weber I, Nausch M, Sparmann G, Koch K, Seyfarth M et al. Immunohistochemical characterization of the pancreatic cellular infiltrate in normal pancreas, chronic pancreatitis and pancreatic carcinoma. Digestion 1998; 59: 192–198.

    Article  CAS  PubMed  Google Scholar 

  4. Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004; 28: e26–e31.

    Article  PubMed  Google Scholar 

  5. Shibuya KC, Goel VK, Xiong W, Sham JG, Pollack SM, Leahy AM et al. Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS One 2014; 9: e96565–13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abbas AK, Lichtman AHH, Pillai S . Cellular and Molecular Immunology, 8 edn. Saunders: Philadelphia, PA, USA, 2014.

    Google Scholar 

  7. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2003; 10: 48–54.

    Article  PubMed  Google Scholar 

  8. Dallal RM, Christakos P, Lee K, Egawa S, Son Y-I, Lotze MT . Paucity of dendritic cells in pancreatic cancer. Surgery 2002; 131: 135–138.

    Article  PubMed  Google Scholar 

  9. Tjomsland V, Sandström P, Spångeus A, Messmer D, Emilsson J, Falkmer U et al. Pancreatic adenocarcinoma exerts systemic effects on the peripheral blood myeloid and plasmacytoid dendritic cells: an indicator of disease severity? BMC Cancer 2010; 10: 581–14.

    Article  Google Scholar 

  10. Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S et al. The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 2011; 31: 3827–3834.

    CAS  PubMed  Google Scholar 

  11. Yanagimoto H, Takai S, Satoi S, Toyokawa H, Takahashi K, Terakawa N et al. Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clin Immunol 2005; 114: 52–60.

    Article  CAS  PubMed  Google Scholar 

  12. Bellone G, Novarino A, Vizio B, Brondino G, Addeo A, Prati A et al. Impact of surgery and chemotherapy on cellular immunity in pancreatic carcinoma patients in view of an integration of standard cancer treatment with immunotherapy. Int J Oncol 2009; 34: 1701–1715.

    Article  CAS  PubMed  Google Scholar 

  13. Hiraoka N, Onozato K, Kosuge T, Hirohashi S . Prevalence of FOXP3+ regulatory t cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006; 12: 5423–5434.

    Article  CAS  PubMed  Google Scholar 

  14. Ene Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 2013; 145: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  15. Trapani JA . The dual adverse effects of TGF-β secretion on tumor progression. Cancer Cell 2005; 8: 349–350.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas DA, Massagué J . TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8: 369–380.

    Article  CAS  PubMed  Google Scholar 

  17. Ryschich E, Nötzel T, Hinz U, Autschbach F, Ferguson J, Simon I et al. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res 2005; 11: 498–504.

    CAS  PubMed  Google Scholar 

  18. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  19. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP . Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009; 206: 1717–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tassi E, Gavazzi F, Albarello L, Senyukov V, Longhi R, Dellabona P et al. Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J Immunol 2008; 181: 6595–6603.

    Article  CAS  PubMed  Google Scholar 

  21. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW . Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60: 1419–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D et al. Tumor-associated transforming growth factor-β and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 1999; 155: 537–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 2011; 208: 469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009; 182: 1746–1755.

    Article  CAS  PubMed  Google Scholar 

  25. Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D et al. Role of tumor endothelium in CD4+CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 2007; 99: 1188–1199.

    Article  CAS  PubMed  Google Scholar 

  26. Bingle L, Brown NJ, Lewis CE . The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196: 254–265.

    Article  CAS  PubMed  Google Scholar 

  27. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011; 167: e211–e219.

    Article  PubMed  Google Scholar 

  28. Yoshikawa K, Mitsunaga S, Kinoshita T, Konishi M, Takahashi S, Gotohda N et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 2012; 103: 2012–2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimsey TF, Campbell AS, Albo D, Wilson M, Wang TN . Co-localization of macrophage inflammatory protein-3alpha (Mip-3alpha) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J 2004; 10: 374–380.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell AS, Albo D, Kimsey TF, White SL, Wang TN . Macrophage inflammatory protein-3alpha promotes pancreatic cancer cell invasion. J Surg Res 2005; 123: 96–101.

    Article  CAS  PubMed  Google Scholar 

  31. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH . Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67: 9518–9527.

    Article  CAS  PubMed  Google Scholar 

  32. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ . Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 2008; 58: 49–59.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe J et al. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 2002; 62: 2347–2352.

    CAS  PubMed  Google Scholar 

  34. Akiyama Y, Maruyama K, Nara N, Hojo T, Cheng JY, Mori T et al. Antitumor effects induced by dendritic cell-based immunotherapy against established pancreatic cancer in hamsters. Cancer Lett 2002; 184: 37–47.

    Article  CAS  PubMed  Google Scholar 

  35. Morse MA, Nair SK, Boczkowski D, Tyler D, Hurwitz HI, Proia A et al. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 2002; 32: 1–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014; 74: 5057–5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tassi E, Braga M, Longhi R, Gavazzi F, Parmiani G, Di Carlo V et al. Non-redundant role for IL-12 and IL-27 in modulating Th2 polarization of carcinoembryonic antigen specific CD4 T cells from pancreatic cancer patients. PLoS One 2009; 4: e7234–e7238.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA . Rosiglitazone and gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother 2012; 62: 225–236.

    Article  PubMed  Google Scholar 

  39. Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T et al. Therapeutic efficacy of bifunctional siRNA combining TGF- 1 silencing with RIG-I activation in pancreatic cancer. Cancer Res 2013; 73: 1709–1720.

    Article  CAS  PubMed  Google Scholar 

  40. Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 2015; 38: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015; 372: 2006–2017.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eggermont A, Chiarion-Sileni V, Jean-Jacques Grob P, Reinhard Dummer P, Wolchok JD, Schmidt H et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 2015; 16: 522–530.

    Article  CAS  PubMed  Google Scholar 

  43. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 2010; 33: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aida K, Miyakawa R, Suzuki K, Narumi K, Udagawa T, Yamamoto Y et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci 2014; 105: 159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanford DE, Porembka MR, Panni RZ, Mitchem JB, Belt BA, Plambeck-Suess SM et al. A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. J Cancer Ther 2013; 4: 797–803.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 2016; 17: 651–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015; 33: 1325–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pillarisetty VG . The pancreatic cancer microenvironment: an immunologic battleground. OncoImmunology 2014; 3: e950171–e950173.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V G Pillarisetty.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y., Pillarisetty, V. T-cell programming in pancreatic adenocarcinoma: a review. Cancer Gene Ther 24, 106–113 (2017). https://doi.org/10.1038/cgt.2016.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.66

This article is cited by

Search

Quick links