Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation and modulation of antitumor immunity in pancreatic cancer

Abstract

Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell–intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host–microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell– and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Host–microbe interactions in PDA and tumor immunity.
Fig. 2: Myeloid cell recruitment, differentiation and targets in PDA.

Similar content being viewed by others

References

  1. Kamisawa, T., Wood, L. D., Itoi, T. & Takaori, K. Pancreatic cancer. Lancet 388, 73–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Howlader N. et al (eds). SEER Cancer Statistics Review, 1975-2017 National Cancer Institute (National Cancer Institute, 2019); https://seer.cancer.gov/csr/1975_2017/.

  3. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Zambirinis, C. P. & Miller, G. Cancer manipulation of host physiology: lessons from pancreatic cancer. Trends Mol. Med. 23, 465–481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, K. E. & Bar-Sagi, D. Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18, 448–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014). This study identified an inflammatory signaling pathway induced by oncogenic KRAS and mediated by IL-17 that was required for malignant transformation in PDA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 910–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carrière, C., Young, A. L., Gunn, J. R., Longnecker, D. S. & Korc, M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun. 382, 561–565 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, P.-Y. et al. Adaptive and reversible resistance to Kras inhibition in pancreatic cancer cells. Cancer Res. 78, 985–1002 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Wilky, B. A. Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol. Rev. 290, 6–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017). This study reported that neoantigen quantity alone did not correlate with survival but that the combination of CD8+ T cell infiltration and neoantigen quality was associated with survival and that long-term survivors had highly immunogenic neoantigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a Phase 1 trial. Gastroenterology 155, 29–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Smaglo, B. G. et al. Targeting pancreatic cancer using non-engineered, multi-antigen specific T cells (TACTOPS) In Proc. Immune Cell Therapies for Cancer: Successes and Challenges of CAR T Cells and Other Forms of Adoptive Therapy, 2019 abstr. nr PR01 (2019).

  20. Balachandran, V. P., Beatty, G. L. & Dougan, S. K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156, 2056–2072 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Naing, A. et al. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell 34, 775–791.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Le, D. T. et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36, 382–389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blando, J. et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc. Natl Acad. Sci. USA 116, 1692–1697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Widdison, A. L., Karanjia, N. D. & Reber, H. A. Routes of spread of pathogens into the pancreas in a feline model of acute pancreatitis. Gut 35, 1306–1310 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017). This study identified Gammaproteobacteria species capable of metabolizing the chemotherapy drug gemcitabine to an inactive form and found Gammaproteobacteria species in human PDA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018). This study reported the presence of intratumoral bacteria in PDA and described mechanisms of their immunosuppressive effects on myeloid cells and T cells in the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas, R. M. et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 39, 1068–1078 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019). This study characterized the intratumoral microbiome based on paraffin-embedded specimens and identified bacterial diversity as a marker of long-term survival in PDA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sethi, V. et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155, 33–37.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Das, S., Shapiro, B., Vucic, E. A., Vogt, S. & Bar-Sagi, D. Tumor cell-derived IL-1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 80, 1088–1101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Seo, Y. D. et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin. Cancer Res. 25, 3934–3945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koenig, A., Mueller, C., Hasel, C., Adler, G. & Menke, A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res. 66, 4662–4671 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol. Cancer Ther. 10, 2135–2145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Markosyan, N. et al. Tumor cell–intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2). J. Clin. Invest. 129, 3594–3609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Slaney, C. Y., Kershaw, M. H. & Darcy, P. K. Trafficking of T cells into tumors. Cancer Res. 74, 7168–7174 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, L., Xue, J., Jaffee, E. M. & Habtezion, A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 144, 1230–1240 (2013).

    Article  PubMed  Google Scholar 

  44. Andrén-Sandberg, A., Dervenis, C. & Lowenfels, B. Etiologic links between chronic pancreatitis and pancreatic cancer. Scand. J. Gastroenterol. 32, 97–103 (1997).

    Article  PubMed  Google Scholar 

  45. Fukunaga, A. et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28, e26–e31 (2004).

    Article  PubMed  Google Scholar 

  46. Ochi, A. et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med. 209, 1671–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med. 208, 469–478 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Dey, P. et al. Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10, 608–625 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keenan, B. P. et al. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 146, 1784–1794.e6 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y. et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 10, 422–439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barilla, R. M. et al. Specialized dendritic cells induce tumor-promoting IL-10+IL-17+ FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma. Nat. Commun. 10, 1424 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gnerlich, J. L. et al. Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J. Immunol. 185, 4063–4071 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756–2761 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Diskin, B. et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol. 21, 442–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499.e15 (2016). This study showed that γδ T cells are capable of inhibiting adaptive immune responses in PDA via checkpoint receptor ligation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Ames, E. et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J. Immunol. 195, 4010–4019 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Van Audenaerde, J. R. M. et al. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget 8, 56968–56979 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gürlevik, E. et al. Administration of gemcitabine after pancreatic tumor resection in mice induces an antitumor immune response mediated by natural killer cells. Gastroenterology 151, 338–350.e7 (2016).

    Article  PubMed  CAS  Google Scholar 

  62. Peng, Y.-P. et al. Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer. Oncotarget 7, 66586–66594 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lim, S. A. et al. Defective localization with impaired tumor cytotoxicity contributes to the immune escape of NK cells in pancreatic cancer patients. Front. Immunol. 10, 496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jun, E. et al. Progressive impairment of NK cell cytotoxic degranulation is associated with TGF-β1 deregulation and disease progression in pancreatic cancer. Front. Immunol. 10, 1354 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng, Y.-P. et al. Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 14, 738 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Li, X. et al. The presence of IGHG1 in human pancreatic carcinomas is associated with immune evasion mechanisms. Pancreas 40, 753–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Husain, Z., Huang, Y., Seth, P. & Sukhatme, V. P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191, 1486–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, Y.-P. et al. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J. Transl. Med. 11, 262 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hu, S. et al. Natural killer cell-based adoptive transfer immunotherapy for pancreatic ductal adenocarcinoma in a KrasLSL-G12D p53LSL-R172H Pdx1-Cre mouse model. Am. J. Cancer Res. 9, 1757–1765 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. et al. An antibody designed to improve adoptive NK-cell therapy inhibits pancreatic cancer progression in a murine model. Cancer Immunol. Res. 7, 219–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, M. et al. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (stage III/IV) pancreatic cancer: a promising treatment. J. Cancer Res. Clin. Oncol. 143, 2607–2618 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, H. et al. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumour Biol. 37, 8657–8664 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Kurahara, H. et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J. Surg. Res. 167, E211–E219 (2011).

    Article  PubMed  Google Scholar 

  77. Daley, D. et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J. Exp. Med. 214, 1711–1724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daley, D. et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23, 556–567 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beatty, G. L. et al. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149, 201–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Stromnes, I. M. et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63, 1769–1781 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Deicher, A. et al. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int. 18, 85 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hegde, S. et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer, M. A. et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat. Commun. 9, 1250 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kenkel, J. A. et al. An immunosuppressive dendritic cell subset accumulates at secondary sites and promotes metastasis in pancreatic cancer. Cancer Res. 77, 4158–4170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jang, J.-E. et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates antitumor immunity in pancreatic cancer. Cell Rep. 20, 558–571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Monti, P. et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res. 63, 7451–7461 (2003).

    CAS  PubMed  Google Scholar 

  89. Zhang, A. et al. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med. 6, 463–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178–193.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shen, T. et al. Prognostic value of programmed cell death protein 1 expression on CD8+ T lymphocytes in pancreatic cancer. Sci. Rep. 7, 7848 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shang, J. et al. Analysis of PD-1 related immune transcriptional profile in different cancer types. Cancer Cell Int. 18, 218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carmi, Y. et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature 521, 99–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Long, K. B. et al. IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov. 6, 400–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011). This study reported clinical responses to CD40 agonism in combination with gemcitabine in patients and identified macrophage-dependent mechanisms that enabled responses to CD40-targeted treatment in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vonderheide, R. H. CD40 immunotherapy for pancreatic cancer. Cancer Res. 79, abstr. I12 (2019).

    Google Scholar 

  97. Panni, R. Z. et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci. Transl. Med. 11, eaau9240 (2019). This study showed that activation of the myeloid cell surface receptor CD11b reprogrammed immunosuppressive macrophages in the TME and enabled effective antigen presentation, leading to an effective adaptive immune response that synergized with checkpoint immunotherapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kaneda, M. M. et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6, 870–885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gunderson, A. J. et al. Bruton tyrosine kinase–dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 6, 270–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Overman, M. et al. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J. Immunother. Cancer 8, e000587 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Candido, J. B. et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23, 1448–1460 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saung, M. T. et al. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. J. Immunother. Cancer 6, 118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013). This study established that targeting the myeloid compartment in PDA by inhibiting CSF1–CSF1R or CCL2–CCR2 interactions impaired oncogenesis and improved immunogenicity in animal models.

    Article  CAS  PubMed  Google Scholar 

  104. Osipov, A., Saung, M. T., Zheng, L. & Murphy, A. G. Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape. J. Immunother. Cancer 7, 224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Seifert, L. et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology 150, 1659–1672.e5 (2016).

    Article  PubMed  Google Scholar 

  106. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ijichi, H. et al. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J. Clin. Invest. 121, 4106–4117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chao, T., Furth, E. E. & Vonderheide, R. H. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 4, 968–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nywening, T. M. et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67, 1112–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Maekawa, T. et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochem. Biophys. Res. Commun. 506, 962–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Nejman, D. et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 368, 973–980 (2020). This study characterized intratumoral bacterial microbiomes across multiple human tumor types, including PDA, and found that different tumor types harbor distinct microbial communities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weiss, G. J. et al. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br. J. Cancer 117, 33–40 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. AstraZeneca. Study of tremelimumab in patients with advanced solid tumors. (NCT02527434) (2020); https://clinicaltrials.gov/ct2/show/results/NCT02527434

  117. Royal, R. E. et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 33, 828–833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aglietta, M. et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. 25, 1750–1755 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Kamath, S. D. et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase Ib study. Oncologist 25, e808–e815 (2020).

    Article  PubMed  Google Scholar 

  120. O’Reilly, E. M. et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 5, 1431–1438 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  121. Bristol-Myers Squibb. A study of nivolumab by itself or nivolumab combined with ipilimumab in patients with advanced or metastatic solid tumors (NCT01928394) (2020); https://clinicaltrials.gov/ct2/show/results/NCT01928394

  122. Zhang, Y. et al. Nab-paclitaxel plus gemcitabine as first-line treatment for advanced pancreatic cancer: a systematic review and meta-analysis. J. Cancer 10, 4420–4429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carmichael, J. et al. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 73, 101–105 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Casper, E. S. et al. Phase II trial of gemcitabine (2,2'-difluorodeoxycytidine) in patients with adenocarcinoma of the pancreas. Invest. New Drugs 12, 29–34 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Hundeyin, M. et al. Innate αβ T cells mediate antitumor immunity by orchestrating immunogenic macrophage programming. Cancer Discov. 9, 1288–1305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pylayeva-Gupta, Y. et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, K. E. et al. Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov. 6, 256–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Mirlekar, B. et al. B cell–derived IL35 drives STAT3-dependent CD8+ T-cell exclusion in pancreatic cancer. Cancer Immunol. Res. 8, 292–308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Das, S. & Bar-Sagi, D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene 38, 3316–3324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, Y. et al. Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 9, 14803–14814 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hiraoka, N. et al. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 112, 1782–1790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Meng, Q., Valentini, D., Rao, M. & Maeurer, M. KRAS RENAISSANCE(S) in tumor infiltrating B cells in pancreatic cancer. Front. Oncol. 8, 384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kang, Y. W. et al. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett. 438, 174–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Spear, S. et al. Discrepancies in the tumor microenvironment of spontaneous and orthotopic murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Front. Immunol. 10, 542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leinwand, J., Miller, G. Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 21, 1152–1159 (2020). https://doi.org/10.1038/s41590-020-0761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0761-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer