Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant mouse p53 transgene elevates the chemical induction of tumors that respond to gene silencing with siRNA

A Corrigendum to this article was published on 16 December 2009

Abstract

To study the role of mutant p53 in the induction and cure of tumors, we generated transgenic mice carrying mutant p53 (mp53) containing a 9 bp deletion in exon 6 in addition to wild-type p53, expressing both p53 and mp53. The mp53 cDNA was cloned from a radiation-induced mouse tumor and ligated to the chicken β-actin promoter/CMV-IE enhancer in the expression vector. The presence of mp53 suppressed p21 expression in primary fibroblasts after ionizing irradiation, indicating the dominant-negative activity of mp53 in the mice. These mice developed fibrosarcomas after the subcutaneous injection of 3-methylcholanthrene with an incidence 1.7-fold higher than that of wild-type mice (42% excess). The tumors were then treated via a potent atelocollagen delivery system with small interfering RNA (siRNA), that targeted the promoter/enhancer of the expression vector, resulting in the suppression of tumor growth in 30% of 44 autochthonous tumors, including four cures, and their transplants, the total fraction corresponding to the tumor excess. This suppressive effect involved the induction of apoptosis. These results indicate that mp53 activity causes tumors that can be suppressed by subsequent silencing of mp53 in the presence of wild-type p53 alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  CAS  Google Scholar 

  2. Pietsch EC, Sykes SM, McMahon SB, Murphy ME . The p53 family and programmed cell death. Oncogene 2008; 27: 6507–6521.

    Article  CAS  Google Scholar 

  3. Norimura T, Nomoto S, Kikuchi M, Gondo Y, Kono S . p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med 1996; 2: 577–580.

    Article  CAS  Google Scholar 

  4. Hu W, Feng Z, Teresky AK, Levine AJ . p53 regulates maternal reproduction through LIF. Nature 2007; 450: 721–724.

    Article  CAS  Google Scholar 

  5. Holstein M, Sidransky D, Vogelstein B, Harris CC . p53: mutations in human cancers. Science 1991; 253: 49–53.

    Article  Google Scholar 

  6. Malkin D . Germ line p53 mutations and heritable cancers. Annu Rev Genet 1994; 28: 443–465.

    Article  CAS  Google Scholar 

  7. Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A . High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989; 9: 3982–3991.

    Article  CAS  Google Scholar 

  8. Harvey M, Vogel H, Morris D, Bradley A, Bernstein A, Donehower LA . A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Gen 1995; 9: 305–311.

    Article  CAS  Google Scholar 

  9. Zhang Z, Li J, Lantry LE, Wang Y, Wiseman RW, Lubet RA et al. p53 transgenic mice are highly susceptible to 1,2-dimethylhydrazine-induced uterine sarcomas. Cancer Res 2002; 62: 3024–3029.

    CAS  PubMed  Google Scholar 

  10. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  Google Scholar 

  11. Lang GA, Iwakura T, Suh YA, Liu G, Rao A, Parant JM et al. Gain of functon of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  Google Scholar 

  12. Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.

    Article  CAS  Google Scholar 

  13. Liu G, McDonnel TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar B et al. High metatstatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 2000; 97: 4174–4179.

    Article  CAS  Google Scholar 

  14. Wang XJ, Greenhalgh DA, Jiang A, He D, Zhong L, Medina D et al. Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogene 1998; 17: 35–45.

    Article  Google Scholar 

  15. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1991; 256: 827–830.

    Article  Google Scholar 

  16. de Vries A, Flores E, Miranda B, Hsieh HM, van Oostrom CTM, Sage J et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 2002; 99: 2948–2953.

    Article  CAS  Google Scholar 

  17. Donehower LA, Harvey M, Slagel BL, McArthur MJ, Montgomery Jr CA, Buttel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 1992; 356: 215–221.

    CAS  Google Scholar 

  18. Kemp CJ, Donehower LA, Bradley A, Balmain A . Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumorigenesis. Cell 1993; 74: 813–822.

    Article  CAS  Google Scholar 

  19. Ventura A, Kirsch DG, McLaughin ME, Trveson DA, Grim J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  Google Scholar 

  20. Xue W, Zender L, Miething C, Dickins RA, Herando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  Google Scholar 

  21. Nakahara W . A pilgrim's progress in cancer research, 1918 to 1974: autobiographical essay. Cancer Res 1974; 34: 1767–1774.

    CAS  PubMed  Google Scholar 

  22. Tanooka H, Tanaka K, Arimoto H . Dose response and growth rates of subcutaneous tumors induced with 3-methylcholanthrene in mice and timing of tumor origin. Cancer Res 1982; 42: 4740–4743.

    CAS  PubMed  Google Scholar 

  23. Tanooka H, Hoshino H, Tanaka K, Nagase M . Experimental radiation therapy and apparent radioresistance of autochthonous tumors subcutaneously induced with 3-methylcholanthrene in mice. Cancer Res 1980; 40: 2547–2551.

    CAS  PubMed  Google Scholar 

  24. Tanooka H, Tanaka K . Test of recurrence after experimental radiation therapy of chemically induced autochthonous tumors in mosaic mice. Int J Radiat Oncol Biol Phys 1985; 11: 1551–1555.

    Article  CAS  Google Scholar 

  25. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450: 903–908.

    Article  CAS  Google Scholar 

  26. Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.

    Article  CAS  Google Scholar 

  27. Morris KV, Simon W-L, Jacobson SE, Looney DJ . Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305: 1289–1292.

    Article  CAS  Google Scholar 

  28. Kim DH, Villeneuve LM, Morris KV, Rossi JJ . Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Biol 2006; 13: 793–797.

    Article  CAS  Google Scholar 

  29. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 2004; 32: e109.

    Article  Google Scholar 

  30. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki, Hirai K et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005; 102: 12177–12182.

    Article  CAS  Google Scholar 

  31. Ootsuyama A, Tanooka H . One hundred percent tumor induction in mouse skin after repeated β irradiation in a limited dose range. Radiat Res 1988; 115: 488–494.

    Article  CAS  Google Scholar 

  32. Ootsuyama A, Makino H, Nagao M, Ochiai A, Yamauchi, Tanooka H . Frequent p53 mutation in mouse tumors induced by repeated β-irradiation. Mol Carcinog 1994; 11: 236–242.

    Article  CAS  Google Scholar 

  33. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–200.

    Article  CAS  Google Scholar 

  34. Auer T, Sninsky JJ, Gelfand DH, Myers TW . Selective amplification of RNA utilizing the nucleotide analog dITP and Thermus thermophilus DNA polymerase. Nucleic Acids Res 1996; 24: 5021–5025.

    Article  CAS  Google Scholar 

  35. Hoel DG, Walburg HE . Statistical analysis of survival experiments. J Natl Cancer Inst 1972; 49: 361–372.

    CAS  PubMed  Google Scholar 

  36. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  Google Scholar 

  37. Tanooka H, Tanaka K . Dose response of monoclonal tumor induction with 3- methylcholanthrene in mosaic mice. Cancer Res 1984; 44: 4630–4632.

    CAS  PubMed  Google Scholar 

  38. Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 2006; 12: 693–698.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr S Kondo for his continuous encouragement and critical comments, Dr S Takahashi for his support of this study, Dr M Katsuki for useful suggestions, Dr K Hirai and Dr K Maruyama for technical advice and support, and Dr S Kito and Ms Y Oota for preparing frozen transgenic mouse embryos. This work was supported by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare, Japan, a Special Grant for the Project Research ‘Genetic Control of Biodefense Mechanisms against Radiation’ (KT), a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (KT), a Grant-in-Aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control (TO) and the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (TO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Tanooka.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanooka, H., Tatsumi, K., Tsuji, H. et al. Mutant mouse p53 transgene elevates the chemical induction of tumors that respond to gene silencing with siRNA. Cancer Gene Ther 17, 1–10 (2010). https://doi.org/10.1038/cgt.2009.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.43

Keywords

Search

Quick links