Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular analysis of human cancer cells infected by an oncolytic HSV-1 reveals multiple upregulated cellular genes and a role for SOCS1 in virus replication

Abstract

Oncolytic herpes simplex viruses (oHSVs) are promising anticancer therapeutics. We sought to characterize the functional genomic response of human cancer cells to oHSV infection using G207, an oHSV previously evaluated in a phase I trial. Five human malignant peripheral nerve sheath tumor cell lines, with differing sensitivity to oHSV, were infected with G207 for 6 h. Functional genomic analysis of virus-infected cells demonstrated large clusters of downregulated cellular mRNAs and smaller clusters of those upregulated, including 21 genes commonly upregulated in all five lines. Of these, 7 are known to be HSV-1 induced and 14 represent novel virus-regulated genes. Gene ontology analysis revealed that a majority of G207-upregulated genes are involved in Janus kinase/signal transducer and activator of transcription signaling, transcriptional regulation, nucleic acid metabolism, protein synthesis and apoptosis. Ingenuity networks highlighted nodes for AP-1 subunits and interferon signaling via STAT1, suppressor of cytokine signaling-1 (SOCS1), SOCS3 and RANTES. As biological confirmation, we found that virus-mediated upregulation of SOCS1 correlated with sensitivity to G207 and that depletion of SOCS1 impaired virus replication by >10-fold. Further characterization of roles provided by oHSV-induced cellular genes during virus replication may be utilized to predict oncolytic efficacy and to provide rational strategies for designing next-generation oncolytic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lin E, Nemunaitis J . Oncolytic viral therapies. Cancer Gene Ther 2004; 11: 643–664.

    Article  CAS  PubMed  Google Scholar 

  2. Bell JC . Oncolytic viruses: what's next? Curr Cancer Drug Targets 2007; 7: 127–131.

    Article  CAS  PubMed  Google Scholar 

  3. Shen Y, Nemunaitis J . Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 2006; 7: 7.

    Google Scholar 

  4. Aghi M, Martuza RL . Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24: 7802–7816.

    Article  CAS  PubMed  Google Scholar 

  5. Aghi M, Rabkin S, Martuza RL . Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J Natl Cancer Inst 2006; 98: 38–50.

    Article  CAS  PubMed  Google Scholar 

  6. Todo T, Feigenbaum F, Rabkin SD et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2: 588–595.

    Article  CAS  PubMed  Google Scholar 

  7. Varghese S, Newsome JT, Rabkin SD et al. Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates. Hum Gene Ther 2001; 12: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  8. Jorgensen TJ, Katz S, Wittmack EK et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia 2001; 3: 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Todo T, Rabkin SD, Sundaresan P et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10: 2741–2755.

    Article  CAS  PubMed  Google Scholar 

  10. Coukos G, Makrigiannakis A, Montas S et al. Multi-attenuated herpes simplex virus-1 mutant G207 exerts cytotoxicity against epithelial ovarian cancer but not normal mesothelium and is suitable for intraperitoneal oncolytic therapy. Cancer Gene Ther 2000; 7: 275–283.

    Article  CAS  PubMed  Google Scholar 

  11. Dambach MJ, Trecki J, Martin N, Markovitz NS . Oncolytic viruses derived from the gamma34.5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein. Mol Ther 2006; 13: 891–898.

    Article  CAS  PubMed  Google Scholar 

  12. Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  13. Khodarev NN, Advani SJ, Gupta N, Roizman B, Weichselbaum RR . Accumulation of specific RNAs encoding transcriptional factors and stress response proteins against a background of severe depletion of cellular RNAs in cells infected with herpes simplex virus 1. Proc Natl Acad Sci USA 1999; 96: 12062–12067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kent JR, Fraser NW . The cellular response to herpes simplex virus type 1 (HSV-1) during latency and reactivation. J Neurovirol 2005; 11: 376–383.

    Article  CAS  PubMed  Google Scholar 

  15. Higaki S, Deai T, Fukuda M, Shimomura Y . Microarray analysis in the HSV-1 latently infected mouse trigeminal ganglion. Cornea 2004; 23: S42–S47.

    Article  PubMed  Google Scholar 

  16. Ray N, Enquist LW . Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol 2004; 78: 3489–3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasieka TJ, Baas T, Carter VS, Proll SC, Katze MG, Leib DA . Functional genomic analysis of herpes simplex virus type 1 counteraction of the host innate response. J Virol 2006; 80: 7600–7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taddeo B, Esclatine A, Roizman B . The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci USA 2002; 99: 17031–17036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kramer MF, Cook WJ, Roth FP et al. Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 2003; 77: 9533–9541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Higaki S, Gebhardt B, Lukiw W, Thompson H, Hill J . Gene expression profiling in the HSV-1 latently infected mouse trigeminal ganglia following hyperthermic stress. Curr Eye Res 2003; 26: 231–238.

    Article  PubMed  Google Scholar 

  21. Hill JM, Lukiw WJ, Gebhardt BM et al. Gene expression analyzed by microarrays in HSV-1 latent mouse trigeminal ganglion following heat stress. Virus Genes 2001; 23: 273–280.

    Article  CAS  PubMed  Google Scholar 

  22. Prehaud C, Megret F, Lafage M, Lafon M . Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 2005; 79: 12893–12904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paludan SR, Melchjorsen J, Malmgaard L, Mogensen SC . Expression of genes for cytokines and cytokine-related functions in leukocytes infected with Herpes simplex virus: comparison between resistant and susceptible mouse strains. Eur Cytokine Netw 2002; 13: 306–316.

    CAS  PubMed  Google Scholar 

  24. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  25. Mahller YY, Rangwala F, Ratner N, Cripe TP . Malignant peripheral nerve sheath tumors with high and low Ras-GTP are permissive for oncolytic herpes simplex virus mutants. Pediatr Blood Cancer 2006; 46: 745–754.

    Article  PubMed  Google Scholar 

  26. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A . A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 2007; 8: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geirsson A, Paliwal I, Lynch RJ, Bothwell AL, Hammond GL . Class II transactivator promoter activity is suppressed through regulation by a trophoblast noncoding RNA. Transplantation 2003; 76: 387–394.

    Article  CAS  PubMed  Google Scholar 

  28. Taddeo B, Zhang W, Roizman B . The UL41 protein of herpes simplex virus 1 degrades RNA by endonucleolytic cleavage in absence of other cellular or viral proteins. PNAS 2006; 103: 2827–2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esclatine A, Taddeo B, Evans L, Roizman B . The herpes simplex virus 1 UL41 gene-dependent destabilization of cellular RNAs is selective and may be sequence-specific. PNAS 2004; 101: 3603–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Esclatine A, Taddeo B, Roizman B . Herpes simplex virus 1 induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-Rich RNAs. J Virol 2004; 78: 8582–8592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hau HH, Walsh RJ, Ogilvie RL, Williams DA, Reilly CS, Bohjanen PR . Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem 2007; 100: 1477–1492.

    Article  CAS  PubMed  Google Scholar 

  32. Sauer I, Schaljo B, Vogl C et al. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 2006; 107: 4790–4797.

    Article  CAS  PubMed  Google Scholar 

  33. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    Article  CAS  PubMed  Google Scholar 

  34. Feng P, Everly Jr DN, Read GS . mRNA decay during herpes simplex virus (HSV) infections: protein–protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A. J Virol 2005; 79: 9651–9664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esclatine A, Taddeo B, Roizman B . The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs. PNAS 2004; 101: 18165–18170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taddeo B, Esclatine A, Roizman B . Post-transcriptional processing of cellular RNAs in herpes simplex virus-infected cells. Biochem Soc Trans 2004; 32 (Part 5): 697–701.

    Article  CAS  PubMed  Google Scholar 

  37. Nogueira ML, Wang VE, Tantin D, Sharp PA, Kristie TM . Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci USA 2004; 101: 1473–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LaBoissiere S, O'Hare P . Analysis of HCF, the cellular cofactor of VP16, in herpes simplex virus-infected cells. J Virol 2000; 74: 99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bedadala GR, Pinnoji RC, Hsia SC . Early growth response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression. Cell Res 2007; 17: 546–555.

    Article  CAS  PubMed  Google Scholar 

  40. Tatarowicz WA, Martin CE, Pekosz AS et al. Repression of the HSV-1 latency-associated transcript (LAT) promoter by the early growth response (EGR) proteins: involvement of a binding site immediately downstream of the TATA box. J Neurovirol 1997; 3: 212–224.

    Article  CAS  PubMed  Google Scholar 

  41. Wormald S, Hilton DJ . Inhibitors of cytokine signal transduction. J Biol Chem 2004; 279: 821–824.

    Article  CAS  PubMed  Google Scholar 

  42. Dai X, Sayama K, Yamasaki K et al. SOCS1-negative feedback of STAT1 activation is a key pathway in the dsRNA-induced innate immune response of human keratinocytes. J Invest Dermatol 2006; 126: 1574–1581.

    Article  CAS  PubMed  Google Scholar 

  43. Ilangumaran S, Finan D, Raine J, Rottapel R . Suppressor of cytokine signaling 1 regulates an endogenous inhibitor of a mast cell protease. J Biol Chem 2003; 278: 41871–41880.

    Article  CAS  PubMed  Google Scholar 

  44. Rottapel R, Ilangumaran S, Neale C et al. The tumor suppressor activity of SOCS-1. Oncogene 2002; 21: 4351–4362.

    Article  CAS  PubMed  Google Scholar 

  45. Evel-Kabler K, Song X-T, Aldrich M, Huang XF, Chen S-Y . SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 2006; 116: 90–100.

    Article  CAS  PubMed  Google Scholar 

  46. Zitzmann K, Brand S, De Toni EN et al. SOCS1 silencing enhances antitumor activity of type I IFNs by regulating apoptosis in neuroendocrine tumor cells. Cancer Res 2007; 67: 5025–5032.

    Article  CAS  PubMed  Google Scholar 

  47. Yokota S-i, Yokosawa N, Okabayashi T et al. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol 2004; 78: 6282–6286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yokota S, Yokosawa N, Okabayashi T, Suzutani T, Fujii N . Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 confers efficient viral replication. Virology 2005; 338: 173–181.

    Article  CAS  PubMed  Google Scholar 

  49. Trgovcich J, Johnson D, Roizman B . Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpes simplex virus 1. J Virol 2002; 76: 6974–6986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC . A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994; 77: 525–535.

    Article  CAS  PubMed  Google Scholar 

  51. Walsh D, Mohr I . Assembly of an active translation initiation factor complex by a viral protein. Genes Dev 2006; 20: 461–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank MediGene Inc. for providing G207. This work was supported by the Cincinnati Children's Hospital Medical Center Division of Hematology and Oncology, by a University of Cincinnati Functional Genomics Seed Grant to YYM, and NIH grant R01-CA114004 to TPC. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T P Cripe.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahller, Y., Sakthivel, B., Baird, W. et al. Molecular analysis of human cancer cells infected by an oncolytic HSV-1 reveals multiple upregulated cellular genes and a role for SOCS1 in virus replication. Cancer Gene Ther 15, 733–741 (2008). https://doi.org/10.1038/cgt.2008.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.40

Keywords

This article is cited by

Search

Quick links