Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin V orientates the mitotic spindle in yeast

Abstract

Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis1. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton2,3,4,5, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud6, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7,8,9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles12 and vacuolar elements13, making it a pivotal component of yeast cell polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spindle orientation depends on Myo2.
Figure 2: Kar9 polarization is affected by only those myo2 alleles that disrupt spindle orientation.
Figure 3: Kar9 interacts with the tail of Myo2.
Figure 4: Working model for the establishment of spindle orientation by Myo2.

Similar content being viewed by others

References

  1. Rose, L. S. & Kemphues, K. J. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545 (1998).

    Article  CAS  Google Scholar 

  2. Sullivan, D. S. & Huffaker, T. C. Astral microtubules are not required for anaphase B in Saccharomyces cerevisiae. J. Cell Biol. 119, 379–388 (1992).

    Article  CAS  Google Scholar 

  3. Theesfeld, C. L., Irazoqui, J. E. Bloom, K. & Lew, D. J. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 146, 1019–1032 (1999).

    Article  CAS  Google Scholar 

  4. Palmer, R. E., Sullivan, D. S., Huffaker, T. & Koshland, D. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 119, 583–593 ( 1992).

    Article  CAS  Google Scholar 

  5. Goode, B. L., Drubin, D. G. & Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63–71 (2000).

    Article  CAS  Google Scholar 

  6. Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143, 1931–1945 ( 1998).

    Article  CAS  Google Scholar 

  7. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390 ( 1998).

    Article  CAS  Google Scholar 

  8. Miller, R. K., Matheos, D. & Rose, M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963– 975 (1999).

    Article  CAS  Google Scholar 

  9. Schwartz, K., Richards, K. & Botstein, D. BIM1 Encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 8, 2677– 2691 (1997).

    Article  CAS  Google Scholar 

  10. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260– 2262 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257– 2259 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791– 808 (1999).

    Article  CAS  Google Scholar 

  13. Catlett, N. L. & Weisman, L. S. The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc. Natl Acad. Sci. USA 95, 14799–14804 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Stearns, T. Motoring to the finish: kinesin and dynein work together to orient the yeast mototic spindle. J. Cell Biol. 138, 957– 960 (1997).

    Article  CAS  Google Scholar 

  15. Heil-Chapdelaine, R. A., Adames, N. R. & Cooper, J. A. Formin′ the connection between microtubules and the cell cortex. J. Cell Biol. 144, 809–811 (1999).

    Article  CAS  Google Scholar 

  16. Adams, A. E. & Pringle, J. R. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J. Cell Biol. 98, 934– 945 (1984).

    Article  CAS  Google Scholar 

  17. Lille, S. H. & Brown, S. S. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae . J. Cell Biol. 125, 825– 842 (1994).

    Article  Google Scholar 

  18. Walch-Solimena, C., Collins, R. N. & Novick, P. J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137, 1495–1509 ( 1997).

    Article  CAS  Google Scholar 

  19. Lillie, S. H. & Brown, S. S. Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358 –361 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Beningo, K. A., Lillie, S. H. & Brown, S. S. The yeast kinesin-related protein sym1p exerts its effects on the class V myosin myo2p via a physical interaction. Mol. Biol. Cell 11, 691–702 (2000).

    Article  CAS  Google Scholar 

  21. Kurihara, L. J., Beh, C. T., Latterich, M., Schekman, R. & Rose, M. D. Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J. Cell Biol. 126, 911–923 (1994).

    Article  CAS  Google Scholar 

  22. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 ( 1999).

    Article  CAS  Google Scholar 

  23. Takizawa, P. A., Sil, A., Swedlow, J. R., Herskowitz, I. & Vale, R. D. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 90–93 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Long, R. M. et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383– 387 (1997).

    Article  CAS  Google Scholar 

  25. Mermall, V., Post, P. L. & Mooseker, M. S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Chen, X. P., Yin, H. & Huffaker, T. C. The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J. Cell Biol. 141, 1169–1179 (1998).

    Article  CAS  Google Scholar 

  27. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  Google Scholar 

  28. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J. Cell Sci. 113, 365–375 ( 2000).

    CAS  PubMed  Google Scholar 

  29. DeZwaan, T. M., Ellingson, E., Pellman, D. & Roof, D. M. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol. 138 , 1023–1040 (1997).

    Article  CAS  Google Scholar 

  30. Cottingham, F. R. & Hoyt, M. A. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J. Cell Biol. 138 , 1041–1053 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Miller, M. Rose, P. Novick, S. Lillie and D. Schott for advice and reagents. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim C. Huffaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Pruyne, D., Huffaker, T. et al. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000). https://doi.org/10.1038/35023024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing