Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomically defined mechanism for proton transfer to a buried redox centre in a protein

An Erratum to this article was published on 07 September 2000

Abstract

The basis of the chemiosmotic theory is that energy from light or respiration is used to generate a trans-membrane proton gradient1. This is largely achieved by membrane-spanning enzymes known as ‘proton pumps’2,3,4,5. There is intense interest in experiments which reveal, at the molecular level, how protons are drawn through proteins6,7,8,9,10,11,12,13.Here we report the mechanism, at atomic resolution, for a single long-range electron-coupled proton transfer. In Azotobacter vinelandii ferredoxin I, reduction of a buried iron–sulphur cluster draws in a solvent proton, whereas re-oxidation is ‘gated’ by proton release to the solvent. Studies of this ‘proton-transferring module’ by fast-scan protein film voltammetry, high-resolution crystallography, site-directed mutagenesis and molecular dynamics, reveal that proton transfer is exquisitely sensitive to the position and pK of a single amino acid. The proton is delivered through the protein matrix by rapid penetrative excursions of the side-chain carboxylate of a surface residue (Asp 15), whose pK shifts in response to the electrostatic charge on the iron–sulphur cluster. Our analysis defines the structural, dynamic and energetic requirements for proton courier groups in redox-driven proton-pumping enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The residues in the vicinity of the [3Fe–4S] cluster in oxidized native Azotobacter vinelandii Ferredoxin I, taken from coordinates 7FD1.
Figure 2: Structures of the various mutant forms of FdI in the region of interest, compared with the structure of oxidized native FdI.
Figure 3: Movement of the Asp15 side chain during redox-driven proton transfers.

Similar content being viewed by others

References

  1. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 2 (Academic, San Diego, 1992).

  2. Wikström, M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr. Opin. Struct. Biol. 8, 480–488 (1998).

    Article  Google Scholar 

  3. Gennis, R. B. How does cytochrome oxidase pump protons? Proc. Natl Acad. Sci. USA 95, 12747–12749 ( 1998).

    Article  ADS  CAS  Google Scholar 

  4. Malmström, B. G. Cytochrome oxidase: pathways for electron tunneling and proton transfer. J. Biol. Inorg. Chem. 3, 339–343 (1998).

    Article  Google Scholar 

  5. Michel, H. The mechanism of proton pumping by cytochrome c oxidase. Proc. Natl Acad. Sci. USA 95, 12819– 12824 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Rammelsberg, R., Huhn, G., Lübben, M. & Gerwert, K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001– 5009 (1998).

    Article  CAS  Google Scholar 

  7. Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J. P. & Lanyi, J. Structural changes in bacteriorhodopsin during ion transport at 2 Å resolution. Science 286, 255–260 (1999).

    Article  CAS  Google Scholar 

  8. Nabedryk, E., Breton, J., Okamura, M. Y. & Paddock, M. L. Proton uptake by carboxylic acid groups upon photoreduction of the secondary quinone (QB) in bacterial reaction centres from Rhodobacter sphaeroides: FTIR studies on the effects of replacing Glu H173. Biochemistry 37, 14457–14462 ( 1998).

    Article  CAS  Google Scholar 

  9. Yoshikawa, S. et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723– 1729 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A. & Gennis, R. B. The roles of two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc. Natl Acad. Sci. USA 94, 9085–9090 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Lübben, M., Prutsch, A., Mamat, B. & Gerwert, K. Electron transfer induces side-chain conformational changes of glutamate-286 from cytochrome bo3. Biochemistry 38, 2048– 2056 (1999).

    Article  Google Scholar 

  12. Junemann, S., Meunier, B., Fisher, N. & Rich, P. R. Effects of mutation of the conserved glutamic acid-286 in subunit I of cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry 38 , 5248–5255 (1999).

    Article  CAS  Google Scholar 

  13. Hirst, J. et al. Kinetics and mechanism of redox-coupled, long-range proton transfer in an iron-sulfur protein. Investigation by fast-scan protein-film voltammetry. J. Am. Chem. Soc. 120, 7085– 7094 (1998).

    Article  CAS  Google Scholar 

  14. Meyer, E. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1, 1543–1562 ( 1992).

    Article  CAS  Google Scholar 

  15. Beratan, D. N., Onuchic, J. N., Winkler, J. R. & Gray, H. B. Electron-tunneling pathways in proteins. Science 258 , 1740–1741 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Page, C. G., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 ( 1999).

    Article  ADS  CAS  Google Scholar 

  17. Klinman, J. P. Quantum mechanical effects in enzyme-catalyzed hydrogen transfer reactions. Trends Biochem. Sci. 14, 368– 373 (1989).

    Article  CAS  Google Scholar 

  18. Gutman, M. & Nachliel, E. The dynamics of proton exchange between bulk and surface groups. Biochim. Biophys. Acta 1231, 123–138 (1995).

    Article  Google Scholar 

  19. Shen, B. et al. Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe–4S] cluster. J. Biol. Chem. 268, 25928–25939 ( 1993).

    CAS  PubMed  Google Scholar 

  20. Stout, C. D. Crystal structures of oxidized and reduced Azotobacter vinelandii ferredoxin at pH 8 and 6. J. Biol. Chem. 268, 25920–25927 (1993).

    CAS  PubMed  Google Scholar 

  21. Stout, C. D., Stura, E. A. & McRee, D. E. Structure of Azotobacter vinelandii 7Fe ferredoxin at 1. 35 Å resolution and determination of the [Fe–S] bonds with 0. 01 Å accuracy. J. Mol. Biol. 278, 629–639 (1998).

    Article  CAS  Google Scholar 

  22. Schipke, C. G., Goodin, D. B., McRee, D. E. & Stout, C. D. Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1. 4 Å resolution: conformational change of surface residues without significant change in the [3Fe–4S]+/0 cluster. Biochemistry 38, 8228–8239 ( 1999).

    Article  CAS  Google Scholar 

  23. Armstrong, F. A., Heering, H. A. & Hirst, J. Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 26, 169– 179 (1997).

    Article  CAS  Google Scholar 

  24. Stephens, P. J. et al. Circular-dichroism and magnetic circular-dichroism of Azotobacter vinelandii ferredoxin I. Biochemistry 30, 3200–3209 (1991).

    Article  CAS  Google Scholar 

  25. Hu, Z. G., Jollie, D., Burgess, B. K., Stephens, P. J. & Münck, E. Mössbauer and EPR studies of Azotobacter vinelandii ferredoxin I. Biochemistry 33, 14475–14485 (1994).

    Article  CAS  Google Scholar 

  26. Aono, S. et al. Solution structure of oxidized Fe7S8 ferredoxin from the thermophillic bacterium Bacillus schlegelii by 1H NMR spectroscopy. Biochemistry 37, 9812– 9826 (1998).

    Article  CAS  Google Scholar 

  27. Gao-Sheridan, H. S. A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe–4S]0 to [4Fe–4S]2+ conversion in vitro but not in vivo. J. Chem. Biol. 273 , 33692–33701 (1998).

    Article  CAS  Google Scholar 

  28. Guthrie, J. P. Intrinsic barriers for protons transfer reactions involving electronegative atoms, and the water mediated proton switch: an analysis in terms of Marcus theory. J. Am. Chem. Soc. 118, 12886– 12890 (1996).

    Article  CAS  Google Scholar 

  29. Banci, L., Bertini, I., Carloni, P., Luchinat, C. & Orioli, P. L. Molecular-dynamics on HIPIP from Chromatium vinosum and comparison with NMR data. J. Am. Chem. Soc. 114, 10683–10689 (1992).

    Article  Google Scholar 

  30. Noodleman, L., Norman, J. G. Jr, Osborne, J. H., Aizman, A. & Case, D. A. Models for ferredoxins—electronic structures of iron sulfur clusters with one, two and four iron atoms. J. Am. Chem. Soc. 107, 3418–3426 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Poulos and J. Lanyi for comments on the manuscript. This research was supported by grants from the NIH, EPSRC, and BBRSC. B.B.K. thanks The Fulbright Commission for a Senior Scholarship, and the John Simon Guggenheim Foundation for a Travelling Fellowship. R.C. is grateful to The National Council of Science and Technology of Mexico (CONACYT) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser A. Armstrong.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Hirst, J., Camba, R. et al. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature 405, 814–817 (2000). https://doi.org/10.1038/35015610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing